From the Relativistic Mixture of Gases to the Relativistic Cucker–Smale Flocking

We present a relativistic model for a mixture of Euler gases with multiple temperatures. For the proposed relativistic model, we explicitly determine production terms resulting from the interchange of energy–momentum between the constituents via the entropy principle. We use the analogy with the hom...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Archive for rational mechanics and analysis 2020-03, Vol.235 (3), p.1661-1706
Hauptverfasser: Ha, Seung-Yeal, Kim, Jeongho, Ruggeri, Tommaso
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1706
container_issue 3
container_start_page 1661
container_title Archive for rational mechanics and analysis
container_volume 235
creator Ha, Seung-Yeal
Kim, Jeongho
Ruggeri, Tommaso
description We present a relativistic model for a mixture of Euler gases with multiple temperatures. For the proposed relativistic model, we explicitly determine production terms resulting from the interchange of energy–momentum between the constituents via the entropy principle. We use the analogy with the homogeneous solutions of a mixture of gases and the thermomechanical Cucker–Smale (in short TCS) flocking model in a classical setting (Ha and Ruggeri in Arch Ration Mech Anal 223:1397–1425, 2017) to derive a relativistic counterpart of the TCS model. Moreover, we employ the theory of a principal subsystem to derive the relativistic Cucker–Smale (in short CS) model. For the derived relativistic CS model, we provide a sufficient framework leading to the exponential flocking in terms of communication weights and also show that the relativistic CS model reduces to the classical CS model, as the speed of light tends to infinity in any finite-time interval.
doi_str_mv 10.1007/s00205-019-01452-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2356822935</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2356822935</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-8abbfec483dcdfbaf808505d684a935132def429fa0b1673b83ffe3f438bd9803</originalsourceid><addsrcrecordid>eNp9kMFKAzEURYMoWKs_4CrgOvqSTKaZpRSrQkWoug6ZTFKnnTY1mRG78x_8Q7_E1BFcCC7CI3DufbyD0CmFcwowuogADAQBWqSXCUa2e2hAM84I5CO-jwYAwEkh2OgQHcW42H0ZzwdoNgl-hdtni2e20W39Wse2Nviufmu7YLF3-FpHG3Hr_0Ljzixt-Hz_eFjpxuJJ482yXs-P0YHTTbQnP3OIniZXj-MbMr2_vh1fTonhtGiJ1GXprMkkr0zlSu0kSAGiymWmCy4oZ5V1GSuchpKmI0rJnbPcZVyWVSGBD9FZ37sJ_qWzsVUL34V1WqkYF7lkLNUkivWUCT7GYJ3ahHqlw1ZRUDt3qnenkjv17U5tU4j3oZjg9dyG3-p_Ul-PZXOh</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2356822935</pqid></control><display><type>article</type><title>From the Relativistic Mixture of Gases to the Relativistic Cucker–Smale Flocking</title><source>SpringerNature Journals</source><creator>Ha, Seung-Yeal ; Kim, Jeongho ; Ruggeri, Tommaso</creator><creatorcontrib>Ha, Seung-Yeal ; Kim, Jeongho ; Ruggeri, Tommaso</creatorcontrib><description>We present a relativistic model for a mixture of Euler gases with multiple temperatures. For the proposed relativistic model, we explicitly determine production terms resulting from the interchange of energy–momentum between the constituents via the entropy principle. We use the analogy with the homogeneous solutions of a mixture of gases and the thermomechanical Cucker–Smale (in short TCS) flocking model in a classical setting (Ha and Ruggeri in Arch Ration Mech Anal 223:1397–1425, 2017) to derive a relativistic counterpart of the TCS model. Moreover, we employ the theory of a principal subsystem to derive the relativistic Cucker–Smale (in short CS) model. For the derived relativistic CS model, we provide a sufficient framework leading to the exponential flocking in terms of communication weights and also show that the relativistic CS model reduces to the classical CS model, as the speed of light tends to infinity in any finite-time interval.</description><identifier>ISSN: 0003-9527</identifier><identifier>EISSN: 1432-0673</identifier><identifier>DOI: 10.1007/s00205-019-01452-y</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Classical Mechanics ; Complex Systems ; Fluid- and Aerodynamics ; Mathematical and Computational Physics ; Physics ; Physics and Astronomy ; Relativism ; Relativistic effects ; Subsystems ; Theoretical</subject><ispartof>Archive for rational mechanics and analysis, 2020-03, Vol.235 (3), p.1661-1706</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>Archive for Rational Mechanics and Analysis is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-8abbfec483dcdfbaf808505d684a935132def429fa0b1673b83ffe3f438bd9803</citedby><cites>FETCH-LOGICAL-c319t-8abbfec483dcdfbaf808505d684a935132def429fa0b1673b83ffe3f438bd9803</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00205-019-01452-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00205-019-01452-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Ha, Seung-Yeal</creatorcontrib><creatorcontrib>Kim, Jeongho</creatorcontrib><creatorcontrib>Ruggeri, Tommaso</creatorcontrib><title>From the Relativistic Mixture of Gases to the Relativistic Cucker–Smale Flocking</title><title>Archive for rational mechanics and analysis</title><addtitle>Arch Rational Mech Anal</addtitle><description>We present a relativistic model for a mixture of Euler gases with multiple temperatures. For the proposed relativistic model, we explicitly determine production terms resulting from the interchange of energy–momentum between the constituents via the entropy principle. We use the analogy with the homogeneous solutions of a mixture of gases and the thermomechanical Cucker–Smale (in short TCS) flocking model in a classical setting (Ha and Ruggeri in Arch Ration Mech Anal 223:1397–1425, 2017) to derive a relativistic counterpart of the TCS model. Moreover, we employ the theory of a principal subsystem to derive the relativistic Cucker–Smale (in short CS) model. For the derived relativistic CS model, we provide a sufficient framework leading to the exponential flocking in terms of communication weights and also show that the relativistic CS model reduces to the classical CS model, as the speed of light tends to infinity in any finite-time interval.</description><subject>Classical Mechanics</subject><subject>Complex Systems</subject><subject>Fluid- and Aerodynamics</subject><subject>Mathematical and Computational Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Relativism</subject><subject>Relativistic effects</subject><subject>Subsystems</subject><subject>Theoretical</subject><issn>0003-9527</issn><issn>1432-0673</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kMFKAzEURYMoWKs_4CrgOvqSTKaZpRSrQkWoug6ZTFKnnTY1mRG78x_8Q7_E1BFcCC7CI3DufbyD0CmFcwowuogADAQBWqSXCUa2e2hAM84I5CO-jwYAwEkh2OgQHcW42H0ZzwdoNgl-hdtni2e20W39Wse2Nviufmu7YLF3-FpHG3Hr_0Ljzixt-Hz_eFjpxuJJ482yXs-P0YHTTbQnP3OIniZXj-MbMr2_vh1fTonhtGiJ1GXprMkkr0zlSu0kSAGiymWmCy4oZ5V1GSuchpKmI0rJnbPcZVyWVSGBD9FZ37sJ_qWzsVUL34V1WqkYF7lkLNUkivWUCT7GYJ3ahHqlw1ZRUDt3qnenkjv17U5tU4j3oZjg9dyG3-p_Ul-PZXOh</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Ha, Seung-Yeal</creator><creator>Kim, Jeongho</creator><creator>Ruggeri, Tommaso</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20200301</creationdate><title>From the Relativistic Mixture of Gases to the Relativistic Cucker–Smale Flocking</title><author>Ha, Seung-Yeal ; Kim, Jeongho ; Ruggeri, Tommaso</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-8abbfec483dcdfbaf808505d684a935132def429fa0b1673b83ffe3f438bd9803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Classical Mechanics</topic><topic>Complex Systems</topic><topic>Fluid- and Aerodynamics</topic><topic>Mathematical and Computational Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Relativism</topic><topic>Relativistic effects</topic><topic>Subsystems</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ha, Seung-Yeal</creatorcontrib><creatorcontrib>Kim, Jeongho</creatorcontrib><creatorcontrib>Ruggeri, Tommaso</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Archive for rational mechanics and analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ha, Seung-Yeal</au><au>Kim, Jeongho</au><au>Ruggeri, Tommaso</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>From the Relativistic Mixture of Gases to the Relativistic Cucker–Smale Flocking</atitle><jtitle>Archive for rational mechanics and analysis</jtitle><stitle>Arch Rational Mech Anal</stitle><date>2020-03-01</date><risdate>2020</risdate><volume>235</volume><issue>3</issue><spage>1661</spage><epage>1706</epage><pages>1661-1706</pages><issn>0003-9527</issn><eissn>1432-0673</eissn><abstract>We present a relativistic model for a mixture of Euler gases with multiple temperatures. For the proposed relativistic model, we explicitly determine production terms resulting from the interchange of energy–momentum between the constituents via the entropy principle. We use the analogy with the homogeneous solutions of a mixture of gases and the thermomechanical Cucker–Smale (in short TCS) flocking model in a classical setting (Ha and Ruggeri in Arch Ration Mech Anal 223:1397–1425, 2017) to derive a relativistic counterpart of the TCS model. Moreover, we employ the theory of a principal subsystem to derive the relativistic Cucker–Smale (in short CS) model. For the derived relativistic CS model, we provide a sufficient framework leading to the exponential flocking in terms of communication weights and also show that the relativistic CS model reduces to the classical CS model, as the speed of light tends to infinity in any finite-time interval.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00205-019-01452-y</doi><tpages>46</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0003-9527
ispartof Archive for rational mechanics and analysis, 2020-03, Vol.235 (3), p.1661-1706
issn 0003-9527
1432-0673
language eng
recordid cdi_proquest_journals_2356822935
source SpringerNature Journals
subjects Classical Mechanics
Complex Systems
Fluid- and Aerodynamics
Mathematical and Computational Physics
Physics
Physics and Astronomy
Relativism
Relativistic effects
Subsystems
Theoretical
title From the Relativistic Mixture of Gases to the Relativistic Cucker–Smale Flocking
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T21%3A15%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=From%20the%20Relativistic%20Mixture%20of%20Gases%20to%20the%20Relativistic%20Cucker%E2%80%93Smale%20Flocking&rft.jtitle=Archive%20for%20rational%20mechanics%20and%20analysis&rft.au=Ha,%20Seung-Yeal&rft.date=2020-03-01&rft.volume=235&rft.issue=3&rft.spage=1661&rft.epage=1706&rft.pages=1661-1706&rft.issn=0003-9527&rft.eissn=1432-0673&rft_id=info:doi/10.1007/s00205-019-01452-y&rft_dat=%3Cproquest_cross%3E2356822935%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2356822935&rft_id=info:pmid/&rfr_iscdi=true