A partial converse to the Andreotti–Grauert theorem

Let $X$ be a smooth projective manifold with $\dim _{\mathbb{C}}X=n$ . We show that if a line bundle $L$ is $(n-1)$ -ample, then it is $(n-1)$ -positive. This is a partial converse to the Andreotti–Grauert theorem. As an application, we show that a projective manifold $X$ is uniruled if and only if...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Compositio mathematica 2019-01, Vol.155 (1), p.89-99
1. Verfasser: Yang, Xiaokui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 99
container_issue 1
container_start_page 89
container_title Compositio mathematica
container_volume 155
creator Yang, Xiaokui
description Let $X$ be a smooth projective manifold with $\dim _{\mathbb{C}}X=n$ . We show that if a line bundle $L$ is $(n-1)$ -ample, then it is $(n-1)$ -positive. This is a partial converse to the Andreotti–Grauert theorem. As an application, we show that a projective manifold $X$ is uniruled if and only if there exists a Hermitian metric $\unicode[STIX]{x1D714}$ on $X$ such that its Ricci curvature $\text{Ric}(\unicode[STIX]{x1D714})$ has at least one positive eigenvalue everywhere.
doi_str_mv 10.1112/S0010437X18007509
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2356797471</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1112_S0010437X18007509</cupid><sourcerecordid>2356797471</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-572d328a56ecadf652ff1baf7be236627f321e9271f818b0d628280cc7e850b83</originalsourceid><addsrcrecordid>eNp1kM9Kw0AQxhdRsFYfwFvAc3RmN_unx1K0CgUPKngLm2RWU9pu3d0I3nwH39AnMaEFD-JpYL7v983wMXaOcImI_OoBAKEQ-hkNgJYwOWAjlBpyaQp1yEaDnA_6MTuJcQkA3HAzYnKabW1IrV1ltd-8U4iUJZ-lV8qmmyaQT6n9_vyaB9tRSMPeB1qfsiNnV5HO9nPMnm6uH2e3-eJ-fjebLvJaGJFyqXkjuLFSUW0bpyR3DivrdEVcKMW1ExxpwjU6g6aCRg1PQV1rMhIqI8bsYpe7Df6to5jKpe_Cpj9ZciGVnuhCY-_CnasOPsZArtyGdm3DR4lQDu2Uf9rpGbFn7LoKbfNCv9H_Uz-EH2ZX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2356797471</pqid></control><display><type>article</type><title>A partial converse to the Andreotti–Grauert theorem</title><source>EZB-FREE-00999 freely available EZB journals</source><source>Cambridge University Press Journals Complete</source><creator>Yang, Xiaokui</creator><creatorcontrib>Yang, Xiaokui</creatorcontrib><description>Let $X$ be a smooth projective manifold with $\dim _{\mathbb{C}}X=n$ . We show that if a line bundle $L$ is $(n-1)$ -ample, then it is $(n-1)$ -positive. This is a partial converse to the Andreotti–Grauert theorem. As an application, we show that a projective manifold $X$ is uniruled if and only if there exists a Hermitian metric $\unicode[STIX]{x1D714}$ on $X$ such that its Ricci curvature $\text{Ric}(\unicode[STIX]{x1D714})$ has at least one positive eigenvalue everywhere.</description><identifier>ISSN: 0010-437X</identifier><identifier>EISSN: 1570-5846</identifier><identifier>DOI: 10.1112/S0010437X18007509</identifier><language>eng</language><publisher>London, UK: London Mathematical Society</publisher><subject>Eigenvalues ; Manifolds ; Theorems</subject><ispartof>Compositio mathematica, 2019-01, Vol.155 (1), p.89-99</ispartof><rights>The Author 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-572d328a56ecadf652ff1baf7be236627f321e9271f818b0d628280cc7e850b83</citedby><cites>FETCH-LOGICAL-c383t-572d328a56ecadf652ff1baf7be236627f321e9271f818b0d628280cc7e850b83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0010437X18007509/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,780,784,27924,27925,55628</link.rule.ids></links><search><creatorcontrib>Yang, Xiaokui</creatorcontrib><title>A partial converse to the Andreotti–Grauert theorem</title><title>Compositio mathematica</title><addtitle>Compositio Math</addtitle><description>Let $X$ be a smooth projective manifold with $\dim _{\mathbb{C}}X=n$ . We show that if a line bundle $L$ is $(n-1)$ -ample, then it is $(n-1)$ -positive. This is a partial converse to the Andreotti–Grauert theorem. As an application, we show that a projective manifold $X$ is uniruled if and only if there exists a Hermitian metric $\unicode[STIX]{x1D714}$ on $X$ such that its Ricci curvature $\text{Ric}(\unicode[STIX]{x1D714})$ has at least one positive eigenvalue everywhere.</description><subject>Eigenvalues</subject><subject>Manifolds</subject><subject>Theorems</subject><issn>0010-437X</issn><issn>1570-5846</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kM9Kw0AQxhdRsFYfwFvAc3RmN_unx1K0CgUPKngLm2RWU9pu3d0I3nwH39AnMaEFD-JpYL7v983wMXaOcImI_OoBAKEQ-hkNgJYwOWAjlBpyaQp1yEaDnA_6MTuJcQkA3HAzYnKabW1IrV1ltd-8U4iUJZ-lV8qmmyaQT6n9_vyaB9tRSMPeB1qfsiNnV5HO9nPMnm6uH2e3-eJ-fjebLvJaGJFyqXkjuLFSUW0bpyR3DivrdEVcKMW1ExxpwjU6g6aCRg1PQV1rMhIqI8bsYpe7Df6to5jKpe_Cpj9ZciGVnuhCY-_CnasOPsZArtyGdm3DR4lQDu2Uf9rpGbFn7LoKbfNCv9H_Uz-EH2ZX</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Yang, Xiaokui</creator><general>London Mathematical Society</general><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PADUT</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20190101</creationdate><title>A partial converse to the Andreotti–Grauert theorem</title><author>Yang, Xiaokui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-572d328a56ecadf652ff1baf7be236627f321e9271f818b0d628280cc7e850b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Eigenvalues</topic><topic>Manifolds</topic><topic>Theorems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Xiaokui</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Research Library China</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Compositio mathematica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Xiaokui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A partial converse to the Andreotti–Grauert theorem</atitle><jtitle>Compositio mathematica</jtitle><addtitle>Compositio Math</addtitle><date>2019-01-01</date><risdate>2019</risdate><volume>155</volume><issue>1</issue><spage>89</spage><epage>99</epage><pages>89-99</pages><issn>0010-437X</issn><eissn>1570-5846</eissn><abstract>Let $X$ be a smooth projective manifold with $\dim _{\mathbb{C}}X=n$ . We show that if a line bundle $L$ is $(n-1)$ -ample, then it is $(n-1)$ -positive. This is a partial converse to the Andreotti–Grauert theorem. As an application, we show that a projective manifold $X$ is uniruled if and only if there exists a Hermitian metric $\unicode[STIX]{x1D714}$ on $X$ such that its Ricci curvature $\text{Ric}(\unicode[STIX]{x1D714})$ has at least one positive eigenvalue everywhere.</abstract><cop>London, UK</cop><pub>London Mathematical Society</pub><doi>10.1112/S0010437X18007509</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0010-437X
ispartof Compositio mathematica, 2019-01, Vol.155 (1), p.89-99
issn 0010-437X
1570-5846
language eng
recordid cdi_proquest_journals_2356797471
source EZB-FREE-00999 freely available EZB journals; Cambridge University Press Journals Complete
subjects Eigenvalues
Manifolds
Theorems
title A partial converse to the Andreotti–Grauert theorem
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T03%3A49%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20partial%20converse%20to%20the%20Andreotti%E2%80%93Grauert%20theorem&rft.jtitle=Compositio%20mathematica&rft.au=Yang,%20Xiaokui&rft.date=2019-01-01&rft.volume=155&rft.issue=1&rft.spage=89&rft.epage=99&rft.pages=89-99&rft.issn=0010-437X&rft.eissn=1570-5846&rft_id=info:doi/10.1112/S0010437X18007509&rft_dat=%3Cproquest_cross%3E2356797471%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2356797471&rft_id=info:pmid/&rft_cupid=10_1112_S0010437X18007509&rfr_iscdi=true