Combining Parametric Land Surface Models with Machine Learning
A hybrid machine learning and process-based-modeling (PBM) approach is proposed and evaluated at a handful of AmeriFlux sites to simulate the top-layer soil moisture state. The Hybrid-PBM (HPBM) employed here uses the Noah land-surface model integrated with Gaussian Processes. It is designed to corr...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2020-05 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Pelissier, Craig Frame, Jonathan Nearing, Grey |
description | A hybrid machine learning and process-based-modeling (PBM) approach is proposed and evaluated at a handful of AmeriFlux sites to simulate the top-layer soil moisture state. The Hybrid-PBM (HPBM) employed here uses the Noah land-surface model integrated with Gaussian Processes. It is designed to correct the model only in climatological situations similar to the training data else it reverts to the PBM. In this way, our approach avoids bad predictions in scenarios where similar training data is not available and incorporates our physical understanding of the system. Here we assume an autoregressive model and obtain out-of-sample results with upwards of a 3-fold reduction in the RMSE using a one-year leave-one-out cross-validation at each of the selected sites. A path is outlined for using hybrid modeling to build global land-surface models with the potential to significantly outperform the current state-of-the-art. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2356385494</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2356385494</sourcerecordid><originalsourceid>FETCH-proquest_journals_23563854943</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwc87PTcrMy8xLVwhILErMTS0pykxW8EnMS1EILi1KS0xOVfDNT0nNKVYozyzJUPBNTM7IzEtV8ElNLAJp4mFgTUvMKU7lhdLcDMpuriHOHroFRfmFpanFJfFZ-aVFeUCpeCNjUzNjC1MTSxNj4lQBAIhkN_A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2356385494</pqid></control><display><type>article</type><title>Combining Parametric Land Surface Models with Machine Learning</title><source>Free E- Journals</source><creator>Pelissier, Craig ; Frame, Jonathan ; Nearing, Grey</creator><creatorcontrib>Pelissier, Craig ; Frame, Jonathan ; Nearing, Grey</creatorcontrib><description>A hybrid machine learning and process-based-modeling (PBM) approach is proposed and evaluated at a handful of AmeriFlux sites to simulate the top-layer soil moisture state. The Hybrid-PBM (HPBM) employed here uses the Noah land-surface model integrated with Gaussian Processes. It is designed to correct the model only in climatological situations similar to the training data else it reverts to the PBM. In this way, our approach avoids bad predictions in scenarios where similar training data is not available and incorporates our physical understanding of the system. Here we assume an autoregressive model and obtain out-of-sample results with upwards of a 3-fold reduction in the RMSE using a one-year leave-one-out cross-validation at each of the selected sites. A path is outlined for using hybrid modeling to build global land-surface models with the potential to significantly outperform the current state-of-the-art.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Autoregressive models ; Computer simulation ; Gaussian process ; Machine learning ; Modelling ; Soil layers ; Soil moisture ; Training</subject><ispartof>arXiv.org, 2020-05</ispartof><rights>2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Pelissier, Craig</creatorcontrib><creatorcontrib>Frame, Jonathan</creatorcontrib><creatorcontrib>Nearing, Grey</creatorcontrib><title>Combining Parametric Land Surface Models with Machine Learning</title><title>arXiv.org</title><description>A hybrid machine learning and process-based-modeling (PBM) approach is proposed and evaluated at a handful of AmeriFlux sites to simulate the top-layer soil moisture state. The Hybrid-PBM (HPBM) employed here uses the Noah land-surface model integrated with Gaussian Processes. It is designed to correct the model only in climatological situations similar to the training data else it reverts to the PBM. In this way, our approach avoids bad predictions in scenarios where similar training data is not available and incorporates our physical understanding of the system. Here we assume an autoregressive model and obtain out-of-sample results with upwards of a 3-fold reduction in the RMSE using a one-year leave-one-out cross-validation at each of the selected sites. A path is outlined for using hybrid modeling to build global land-surface models with the potential to significantly outperform the current state-of-the-art.</description><subject>Autoregressive models</subject><subject>Computer simulation</subject><subject>Gaussian process</subject><subject>Machine learning</subject><subject>Modelling</subject><subject>Soil layers</subject><subject>Soil moisture</subject><subject>Training</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwc87PTcrMy8xLVwhILErMTS0pykxW8EnMS1EILi1KS0xOVfDNT0nNKVYozyzJUPBNTM7IzEtV8ElNLAJp4mFgTUvMKU7lhdLcDMpuriHOHroFRfmFpanFJfFZ-aVFeUCpeCNjUzNjC1MTSxNj4lQBAIhkN_A</recordid><startdate>20200508</startdate><enddate>20200508</enddate><creator>Pelissier, Craig</creator><creator>Frame, Jonathan</creator><creator>Nearing, Grey</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200508</creationdate><title>Combining Parametric Land Surface Models with Machine Learning</title><author>Pelissier, Craig ; Frame, Jonathan ; Nearing, Grey</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_23563854943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Autoregressive models</topic><topic>Computer simulation</topic><topic>Gaussian process</topic><topic>Machine learning</topic><topic>Modelling</topic><topic>Soil layers</topic><topic>Soil moisture</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Pelissier, Craig</creatorcontrib><creatorcontrib>Frame, Jonathan</creatorcontrib><creatorcontrib>Nearing, Grey</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pelissier, Craig</au><au>Frame, Jonathan</au><au>Nearing, Grey</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Combining Parametric Land Surface Models with Machine Learning</atitle><jtitle>arXiv.org</jtitle><date>2020-05-08</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>A hybrid machine learning and process-based-modeling (PBM) approach is proposed and evaluated at a handful of AmeriFlux sites to simulate the top-layer soil moisture state. The Hybrid-PBM (HPBM) employed here uses the Noah land-surface model integrated with Gaussian Processes. It is designed to correct the model only in climatological situations similar to the training data else it reverts to the PBM. In this way, our approach avoids bad predictions in scenarios where similar training data is not available and incorporates our physical understanding of the system. Here we assume an autoregressive model and obtain out-of-sample results with upwards of a 3-fold reduction in the RMSE using a one-year leave-one-out cross-validation at each of the selected sites. A path is outlined for using hybrid modeling to build global land-surface models with the potential to significantly outperform the current state-of-the-art.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2020-05 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2356385494 |
source | Free E- Journals |
subjects | Autoregressive models Computer simulation Gaussian process Machine learning Modelling Soil layers Soil moisture Training |
title | Combining Parametric Land Surface Models with Machine Learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T09%3A52%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Combining%20Parametric%20Land%20Surface%20Models%20with%20Machine%20Learning&rft.jtitle=arXiv.org&rft.au=Pelissier,%20Craig&rft.date=2020-05-08&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2356385494%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2356385494&rft_id=info:pmid/&rfr_iscdi=true |