Improving the Stability of Triangular Decomposition of Ill-Conditioned Matrices
An approach to improving the stability of triangular decomposition of a dense positive definite matrix with a large condition number by using the Gauss and Cholesky methods is considered. It is proposed to introduce additions to standard computational schemes with an incomplete inner product of two...
Gespeichert in:
Veröffentlicht in: | Numerical analysis and applications 2019-10, Vol.12 (4), p.388-394 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 394 |
---|---|
container_issue | 4 |
container_start_page | 388 |
container_title | Numerical analysis and applications |
container_volume | 12 |
creator | Lutay, V. N. |
description | An approach to improving the stability of triangular decomposition of a dense positive definite matrix with a large condition number by using the Gauss and Cholesky methods is considered. It is proposed to introduce additions to standard computational schemes with an incomplete inner product of two vectors which is formed by truncating the lower digits of the sum of the products of two numbers. The truncation in the process of decomposition increases the diagonal elements of the triangular matrices by a random number and prevents the appearance of very small numbers during the Gauss decomposition and a negative radical expression in the Cholesky method. The number of additional operations required for obtaining an exact solution is estimated. The results of computational experiments are presented. |
doi_str_mv | 10.1134/S1995423919040062 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2355993567</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2355993567</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-24c52cc61759096e4b2fcad4668e1d0e98df300e32b37d9ef9ca60d914f71c53</originalsourceid><addsrcrecordid>eNp1UMtKA0EQHETBEPMB3hY8r85700eJr0Akh-S-zM5jnbDZiTMTIX_vxogexL50U11V3RRC1wTfEsL43YoACE4ZEMAcY0nP0OgIlZzy6vxnZnCJJilt8FCMVlMuR2g53-5i-PB9W-Q3W6yyanzn86EIrlhHr_p236lYPFgdtruQfPahP-7mXVfOQm--AGuKV5Wj1zZdoQunumQn332M1k-P69lLuVg-z2f3i1IzInNJuRZUa0kqARik5Q11Whku5dQSgy1MjWMYW0YbVhmwDrSS2ADhriJasDG6OdkOz7_vbcr1JuxjP1ysKRMCgAlZDSxyYukYUorW1bvotyoeaoLrY3L1n-QGDT1p0sDtWxt_nf8XfQIN0G98</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2355993567</pqid></control><display><type>article</type><title>Improving the Stability of Triangular Decomposition of Ill-Conditioned Matrices</title><source>Springer Nature - Complete Springer Journals</source><creator>Lutay, V. N.</creator><creatorcontrib>Lutay, V. N.</creatorcontrib><description>An approach to improving the stability of triangular decomposition of a dense positive definite matrix with a large condition number by using the Gauss and Cholesky methods is considered. It is proposed to introduce additions to standard computational schemes with an incomplete inner product of two vectors which is formed by truncating the lower digits of the sum of the products of two numbers. The truncation in the process of decomposition increases the diagonal elements of the triangular matrices by a random number and prevents the appearance of very small numbers during the Gauss decomposition and a negative radical expression in the Cholesky method. The number of additional operations required for obtaining an exact solution is estimated. The results of computational experiments are presented.</description><identifier>ISSN: 1995-4239</identifier><identifier>EISSN: 1995-4247</identifier><identifier>DOI: 10.1134/S1995423919040062</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Decomposition ; Exact solutions ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Matrix methods ; Numerical Analysis ; Random numbers ; Stability</subject><ispartof>Numerical analysis and applications, 2019-10, Vol.12 (4), p.388-394</ispartof><rights>Pleiades Publishing, Ltd. 2019</rights><rights>2019© Pleiades Publishing, Ltd. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-24c52cc61759096e4b2fcad4668e1d0e98df300e32b37d9ef9ca60d914f71c53</citedby><cites>FETCH-LOGICAL-c316t-24c52cc61759096e4b2fcad4668e1d0e98df300e32b37d9ef9ca60d914f71c53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1995423919040062$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1995423919040062$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Lutay, V. N.</creatorcontrib><title>Improving the Stability of Triangular Decomposition of Ill-Conditioned Matrices</title><title>Numerical analysis and applications</title><addtitle>Numer. Analys. Appl</addtitle><description>An approach to improving the stability of triangular decomposition of a dense positive definite matrix with a large condition number by using the Gauss and Cholesky methods is considered. It is proposed to introduce additions to standard computational schemes with an incomplete inner product of two vectors which is formed by truncating the lower digits of the sum of the products of two numbers. The truncation in the process of decomposition increases the diagonal elements of the triangular matrices by a random number and prevents the appearance of very small numbers during the Gauss decomposition and a negative radical expression in the Cholesky method. The number of additional operations required for obtaining an exact solution is estimated. The results of computational experiments are presented.</description><subject>Decomposition</subject><subject>Exact solutions</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Matrix methods</subject><subject>Numerical Analysis</subject><subject>Random numbers</subject><subject>Stability</subject><issn>1995-4239</issn><issn>1995-4247</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1UMtKA0EQHETBEPMB3hY8r85700eJr0Akh-S-zM5jnbDZiTMTIX_vxogexL50U11V3RRC1wTfEsL43YoACE4ZEMAcY0nP0OgIlZzy6vxnZnCJJilt8FCMVlMuR2g53-5i-PB9W-Q3W6yyanzn86EIrlhHr_p236lYPFgdtruQfPahP-7mXVfOQm--AGuKV5Wj1zZdoQunumQn332M1k-P69lLuVg-z2f3i1IzInNJuRZUa0kqARik5Q11Whku5dQSgy1MjWMYW0YbVhmwDrSS2ADhriJasDG6OdkOz7_vbcr1JuxjP1ysKRMCgAlZDSxyYukYUorW1bvotyoeaoLrY3L1n-QGDT1p0sDtWxt_nf8XfQIN0G98</recordid><startdate>20191001</startdate><enddate>20191001</enddate><creator>Lutay, V. N.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20191001</creationdate><title>Improving the Stability of Triangular Decomposition of Ill-Conditioned Matrices</title><author>Lutay, V. N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-24c52cc61759096e4b2fcad4668e1d0e98df300e32b37d9ef9ca60d914f71c53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Decomposition</topic><topic>Exact solutions</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Matrix methods</topic><topic>Numerical Analysis</topic><topic>Random numbers</topic><topic>Stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lutay, V. N.</creatorcontrib><collection>CrossRef</collection><jtitle>Numerical analysis and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lutay, V. N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improving the Stability of Triangular Decomposition of Ill-Conditioned Matrices</atitle><jtitle>Numerical analysis and applications</jtitle><stitle>Numer. Analys. Appl</stitle><date>2019-10-01</date><risdate>2019</risdate><volume>12</volume><issue>4</issue><spage>388</spage><epage>394</epage><pages>388-394</pages><issn>1995-4239</issn><eissn>1995-4247</eissn><abstract>An approach to improving the stability of triangular decomposition of a dense positive definite matrix with a large condition number by using the Gauss and Cholesky methods is considered. It is proposed to introduce additions to standard computational schemes with an incomplete inner product of two vectors which is formed by truncating the lower digits of the sum of the products of two numbers. The truncation in the process of decomposition increases the diagonal elements of the triangular matrices by a random number and prevents the appearance of very small numbers during the Gauss decomposition and a negative radical expression in the Cholesky method. The number of additional operations required for obtaining an exact solution is estimated. The results of computational experiments are presented.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1995423919040062</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1995-4239 |
ispartof | Numerical analysis and applications, 2019-10, Vol.12 (4), p.388-394 |
issn | 1995-4239 1995-4247 |
language | eng |
recordid | cdi_proquest_journals_2355993567 |
source | Springer Nature - Complete Springer Journals |
subjects | Decomposition Exact solutions Mathematical analysis Mathematics Mathematics and Statistics Matrix methods Numerical Analysis Random numbers Stability |
title | Improving the Stability of Triangular Decomposition of Ill-Conditioned Matrices |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T19%3A02%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improving%20the%20Stability%20of%20Triangular%20Decomposition%20of%20Ill-Conditioned%20Matrices&rft.jtitle=Numerical%20analysis%20and%20applications&rft.au=Lutay,%20V.%20N.&rft.date=2019-10-01&rft.volume=12&rft.issue=4&rft.spage=388&rft.epage=394&rft.pages=388-394&rft.issn=1995-4239&rft.eissn=1995-4247&rft_id=info:doi/10.1134/S1995423919040062&rft_dat=%3Cproquest_cross%3E2355993567%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2355993567&rft_id=info:pmid/&rfr_iscdi=true |