Improving the Stability of Triangular Decomposition of Ill-Conditioned Matrices

An approach to improving the stability of triangular decomposition of a dense positive definite matrix with a large condition number by using the Gauss and Cholesky methods is considered. It is proposed to introduce additions to standard computational schemes with an incomplete inner product of two...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Numerical analysis and applications 2019-10, Vol.12 (4), p.388-394
1. Verfasser: Lutay, V. N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 394
container_issue 4
container_start_page 388
container_title Numerical analysis and applications
container_volume 12
creator Lutay, V. N.
description An approach to improving the stability of triangular decomposition of a dense positive definite matrix with a large condition number by using the Gauss and Cholesky methods is considered. It is proposed to introduce additions to standard computational schemes with an incomplete inner product of two vectors which is formed by truncating the lower digits of the sum of the products of two numbers. The truncation in the process of decomposition increases the diagonal elements of the triangular matrices by a random number and prevents the appearance of very small numbers during the Gauss decomposition and a negative radical expression in the Cholesky method. The number of additional operations required for obtaining an exact solution is estimated. The results of computational experiments are presented.
doi_str_mv 10.1134/S1995423919040062
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2355993567</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2355993567</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-24c52cc61759096e4b2fcad4668e1d0e98df300e32b37d9ef9ca60d914f71c53</originalsourceid><addsrcrecordid>eNp1UMtKA0EQHETBEPMB3hY8r85700eJr0Akh-S-zM5jnbDZiTMTIX_vxogexL50U11V3RRC1wTfEsL43YoACE4ZEMAcY0nP0OgIlZzy6vxnZnCJJilt8FCMVlMuR2g53-5i-PB9W-Q3W6yyanzn86EIrlhHr_p236lYPFgdtruQfPahP-7mXVfOQm--AGuKV5Wj1zZdoQunumQn332M1k-P69lLuVg-z2f3i1IzInNJuRZUa0kqARik5Q11Whku5dQSgy1MjWMYW0YbVhmwDrSS2ADhriJasDG6OdkOz7_vbcr1JuxjP1ysKRMCgAlZDSxyYukYUorW1bvotyoeaoLrY3L1n-QGDT1p0sDtWxt_nf8XfQIN0G98</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2355993567</pqid></control><display><type>article</type><title>Improving the Stability of Triangular Decomposition of Ill-Conditioned Matrices</title><source>Springer Nature - Complete Springer Journals</source><creator>Lutay, V. N.</creator><creatorcontrib>Lutay, V. N.</creatorcontrib><description>An approach to improving the stability of triangular decomposition of a dense positive definite matrix with a large condition number by using the Gauss and Cholesky methods is considered. It is proposed to introduce additions to standard computational schemes with an incomplete inner product of two vectors which is formed by truncating the lower digits of the sum of the products of two numbers. The truncation in the process of decomposition increases the diagonal elements of the triangular matrices by a random number and prevents the appearance of very small numbers during the Gauss decomposition and a negative radical expression in the Cholesky method. The number of additional operations required for obtaining an exact solution is estimated. The results of computational experiments are presented.</description><identifier>ISSN: 1995-4239</identifier><identifier>EISSN: 1995-4247</identifier><identifier>DOI: 10.1134/S1995423919040062</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Decomposition ; Exact solutions ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Matrix methods ; Numerical Analysis ; Random numbers ; Stability</subject><ispartof>Numerical analysis and applications, 2019-10, Vol.12 (4), p.388-394</ispartof><rights>Pleiades Publishing, Ltd. 2019</rights><rights>2019© Pleiades Publishing, Ltd. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-24c52cc61759096e4b2fcad4668e1d0e98df300e32b37d9ef9ca60d914f71c53</citedby><cites>FETCH-LOGICAL-c316t-24c52cc61759096e4b2fcad4668e1d0e98df300e32b37d9ef9ca60d914f71c53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1995423919040062$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1995423919040062$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Lutay, V. N.</creatorcontrib><title>Improving the Stability of Triangular Decomposition of Ill-Conditioned Matrices</title><title>Numerical analysis and applications</title><addtitle>Numer. Analys. Appl</addtitle><description>An approach to improving the stability of triangular decomposition of a dense positive definite matrix with a large condition number by using the Gauss and Cholesky methods is considered. It is proposed to introduce additions to standard computational schemes with an incomplete inner product of two vectors which is formed by truncating the lower digits of the sum of the products of two numbers. The truncation in the process of decomposition increases the diagonal elements of the triangular matrices by a random number and prevents the appearance of very small numbers during the Gauss decomposition and a negative radical expression in the Cholesky method. The number of additional operations required for obtaining an exact solution is estimated. The results of computational experiments are presented.</description><subject>Decomposition</subject><subject>Exact solutions</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Matrix methods</subject><subject>Numerical Analysis</subject><subject>Random numbers</subject><subject>Stability</subject><issn>1995-4239</issn><issn>1995-4247</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1UMtKA0EQHETBEPMB3hY8r85700eJr0Akh-S-zM5jnbDZiTMTIX_vxogexL50U11V3RRC1wTfEsL43YoACE4ZEMAcY0nP0OgIlZzy6vxnZnCJJilt8FCMVlMuR2g53-5i-PB9W-Q3W6yyanzn86EIrlhHr_p236lYPFgdtruQfPahP-7mXVfOQm--AGuKV5Wj1zZdoQunumQn332M1k-P69lLuVg-z2f3i1IzInNJuRZUa0kqARik5Q11Whku5dQSgy1MjWMYW0YbVhmwDrSS2ADhriJasDG6OdkOz7_vbcr1JuxjP1ysKRMCgAlZDSxyYukYUorW1bvotyoeaoLrY3L1n-QGDT1p0sDtWxt_nf8XfQIN0G98</recordid><startdate>20191001</startdate><enddate>20191001</enddate><creator>Lutay, V. N.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20191001</creationdate><title>Improving the Stability of Triangular Decomposition of Ill-Conditioned Matrices</title><author>Lutay, V. N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-24c52cc61759096e4b2fcad4668e1d0e98df300e32b37d9ef9ca60d914f71c53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Decomposition</topic><topic>Exact solutions</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Matrix methods</topic><topic>Numerical Analysis</topic><topic>Random numbers</topic><topic>Stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lutay, V. N.</creatorcontrib><collection>CrossRef</collection><jtitle>Numerical analysis and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lutay, V. N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improving the Stability of Triangular Decomposition of Ill-Conditioned Matrices</atitle><jtitle>Numerical analysis and applications</jtitle><stitle>Numer. Analys. Appl</stitle><date>2019-10-01</date><risdate>2019</risdate><volume>12</volume><issue>4</issue><spage>388</spage><epage>394</epage><pages>388-394</pages><issn>1995-4239</issn><eissn>1995-4247</eissn><abstract>An approach to improving the stability of triangular decomposition of a dense positive definite matrix with a large condition number by using the Gauss and Cholesky methods is considered. It is proposed to introduce additions to standard computational schemes with an incomplete inner product of two vectors which is formed by truncating the lower digits of the sum of the products of two numbers. The truncation in the process of decomposition increases the diagonal elements of the triangular matrices by a random number and prevents the appearance of very small numbers during the Gauss decomposition and a negative radical expression in the Cholesky method. The number of additional operations required for obtaining an exact solution is estimated. The results of computational experiments are presented.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1995423919040062</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1995-4239
ispartof Numerical analysis and applications, 2019-10, Vol.12 (4), p.388-394
issn 1995-4239
1995-4247
language eng
recordid cdi_proquest_journals_2355993567
source Springer Nature - Complete Springer Journals
subjects Decomposition
Exact solutions
Mathematical analysis
Mathematics
Mathematics and Statistics
Matrix methods
Numerical Analysis
Random numbers
Stability
title Improving the Stability of Triangular Decomposition of Ill-Conditioned Matrices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T19%3A02%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improving%20the%20Stability%20of%20Triangular%20Decomposition%20of%20Ill-Conditioned%20Matrices&rft.jtitle=Numerical%20analysis%20and%20applications&rft.au=Lutay,%20V.%20N.&rft.date=2019-10-01&rft.volume=12&rft.issue=4&rft.spage=388&rft.epage=394&rft.pages=388-394&rft.issn=1995-4239&rft.eissn=1995-4247&rft_id=info:doi/10.1134/S1995423919040062&rft_dat=%3Cproquest_cross%3E2355993567%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2355993567&rft_id=info:pmid/&rfr_iscdi=true