Machine Learning and Human Perspective

Numbers appear to have limited value for literary study, since our discipline is usually more concerned with exploring differences of interpretation than with describing the objective features of literary works. But it may be time to reexamine the assumption that numbers are useful only for objectiv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PMLA : Publications of the Modern Language Association of America 2020-01, Vol.135 (1), p.92-109
1. Verfasser: Underwood, Ted
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 109
container_issue 1
container_start_page 92
container_title PMLA : Publications of the Modern Language Association of America
container_volume 135
creator Underwood, Ted
description Numbers appear to have limited value for literary study, since our discipline is usually more concerned with exploring differences of interpretation than with describing the objective features of literary works. But it may be time to reexamine the assumption that numbers are useful only for objective description. Machine learning algorithms are actually bad at being objective and rather good at absorbing human perspectives implicit in the evidence used to train them. To dramatize perspectival uses of machine learning, I train models of genre on groups of books categorized by historical actors who range from Edwardian advertisers to contemporary librarians. Comparing the perspectives implicit in their choices casts new light on received histories of genre. Scientific romance and science fiction—whose shifting names have often suggested a fractured history—turn out to be more stable across two centuries than the genre we call fantasy. (TU)
doi_str_mv 10.1632/pmla.2020.135.1.92
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2355908213</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2355908213</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-fb2446071781eefcdd8e1989fe691404516e3a4f019da5c83ecc2a5a44bbffe43</originalsourceid><addsrcrecordid>eNotkMFKAzEURYMoWKs_4GpAcDfje3nJNFlKUStUdKHrkGZedEo7HZNW8O-doa4uFw73whHiGqHCmuRdv934SoIcKukKKytPxAQtmRI1wamYABCUBqU9Fxc5rwFQ1jVNxO2LD19tx8WSfera7rPwXVMsDlvfFW-ccs9h3_7wpTiLfpP56j-n4uPx4X2-KJevT8_z-2UZCO2-jCupVA0znBlkjqFpDKM1NnJtUYHSWDN5FQFt43UwxCFIr71Sq1WMrGgqbo67fdp9Hzjv3Xp3SN1w6SRpbcFIpIGSRyqkXc6Jo-tTu_Xp1yG40YcbfbjRhxt8OHRW0h-9rFLk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2355908213</pqid></control><display><type>article</type><title>Machine Learning and Human Perspective</title><source>Cambridge Journals</source><creator>Underwood, Ted</creator><creatorcontrib>Underwood, Ted</creatorcontrib><description>Numbers appear to have limited value for literary study, since our discipline is usually more concerned with exploring differences of interpretation than with describing the objective features of literary works. But it may be time to reexamine the assumption that numbers are useful only for objective description. Machine learning algorithms are actually bad at being objective and rather good at absorbing human perspectives implicit in the evidence used to train them. To dramatize perspectival uses of machine learning, I train models of genre on groups of books categorized by historical actors who range from Edwardian advertisers to contemporary librarians. Comparing the perspectives implicit in their choices casts new light on received histories of genre. Scientific romance and science fiction—whose shifting names have often suggested a fractured history—turn out to be more stable across two centuries than the genre we call fantasy. (TU)</description><identifier>ISSN: 0030-8129</identifier><identifier>EISSN: 1938-1530</identifier><identifier>DOI: 10.1632/pmla.2020.135.1.92</identifier><language>eng</language><publisher>Cambridge: Cambridge University Press</publisher><subject>Academic discourse ; Algorithms ; Fiction ; Genre ; Literary criticism ; Machine learning</subject><ispartof>PMLA : Publications of the Modern Language Association of America, 2020-01, Vol.135 (1), p.92-109</ispartof><rights>Copyright Modern Language Association of America Jan 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-fb2446071781eefcdd8e1989fe691404516e3a4f019da5c83ecc2a5a44bbffe43</citedby><cites>FETCH-LOGICAL-c319t-fb2446071781eefcdd8e1989fe691404516e3a4f019da5c83ecc2a5a44bbffe43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Underwood, Ted</creatorcontrib><title>Machine Learning and Human Perspective</title><title>PMLA : Publications of the Modern Language Association of America</title><description>Numbers appear to have limited value for literary study, since our discipline is usually more concerned with exploring differences of interpretation than with describing the objective features of literary works. But it may be time to reexamine the assumption that numbers are useful only for objective description. Machine learning algorithms are actually bad at being objective and rather good at absorbing human perspectives implicit in the evidence used to train them. To dramatize perspectival uses of machine learning, I train models of genre on groups of books categorized by historical actors who range from Edwardian advertisers to contemporary librarians. Comparing the perspectives implicit in their choices casts new light on received histories of genre. Scientific romance and science fiction—whose shifting names have often suggested a fractured history—turn out to be more stable across two centuries than the genre we call fantasy. (TU)</description><subject>Academic discourse</subject><subject>Algorithms</subject><subject>Fiction</subject><subject>Genre</subject><subject>Literary criticism</subject><subject>Machine learning</subject><issn>0030-8129</issn><issn>1938-1530</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNotkMFKAzEURYMoWKs_4GpAcDfje3nJNFlKUStUdKHrkGZedEo7HZNW8O-doa4uFw73whHiGqHCmuRdv934SoIcKukKKytPxAQtmRI1wamYABCUBqU9Fxc5rwFQ1jVNxO2LD19tx8WSfera7rPwXVMsDlvfFW-ccs9h3_7wpTiLfpP56j-n4uPx4X2-KJevT8_z-2UZCO2-jCupVA0znBlkjqFpDKM1NnJtUYHSWDN5FQFt43UwxCFIr71Sq1WMrGgqbo67fdp9Hzjv3Xp3SN1w6SRpbcFIpIGSRyqkXc6Jo-tTu_Xp1yG40YcbfbjRhxt8OHRW0h-9rFLk</recordid><startdate>202001</startdate><enddate>202001</enddate><creator>Underwood, Ted</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202001</creationdate><title>Machine Learning and Human Perspective</title><author>Underwood, Ted</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-fb2446071781eefcdd8e1989fe691404516e3a4f019da5c83ecc2a5a44bbffe43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Academic discourse</topic><topic>Algorithms</topic><topic>Fiction</topic><topic>Genre</topic><topic>Literary criticism</topic><topic>Machine learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Underwood, Ted</creatorcontrib><collection>CrossRef</collection><jtitle>PMLA : Publications of the Modern Language Association of America</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Underwood, Ted</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine Learning and Human Perspective</atitle><jtitle>PMLA : Publications of the Modern Language Association of America</jtitle><date>2020-01</date><risdate>2020</risdate><volume>135</volume><issue>1</issue><spage>92</spage><epage>109</epage><pages>92-109</pages><issn>0030-8129</issn><eissn>1938-1530</eissn><abstract>Numbers appear to have limited value for literary study, since our discipline is usually more concerned with exploring differences of interpretation than with describing the objective features of literary works. But it may be time to reexamine the assumption that numbers are useful only for objective description. Machine learning algorithms are actually bad at being objective and rather good at absorbing human perspectives implicit in the evidence used to train them. To dramatize perspectival uses of machine learning, I train models of genre on groups of books categorized by historical actors who range from Edwardian advertisers to contemporary librarians. Comparing the perspectives implicit in their choices casts new light on received histories of genre. Scientific romance and science fiction—whose shifting names have often suggested a fractured history—turn out to be more stable across two centuries than the genre we call fantasy. (TU)</abstract><cop>Cambridge</cop><pub>Cambridge University Press</pub><doi>10.1632/pmla.2020.135.1.92</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0030-8129
ispartof PMLA : Publications of the Modern Language Association of America, 2020-01, Vol.135 (1), p.92-109
issn 0030-8129
1938-1530
language eng
recordid cdi_proquest_journals_2355908213
source Cambridge Journals
subjects Academic discourse
Algorithms
Fiction
Genre
Literary criticism
Machine learning
title Machine Learning and Human Perspective
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T20%3A36%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20Learning%20and%20Human%20Perspective&rft.jtitle=PMLA%20:%20Publications%20of%20the%20Modern%20Language%20Association%20of%20America&rft.au=Underwood,%20Ted&rft.date=2020-01&rft.volume=135&rft.issue=1&rft.spage=92&rft.epage=109&rft.pages=92-109&rft.issn=0030-8129&rft.eissn=1938-1530&rft_id=info:doi/10.1632/pmla.2020.135.1.92&rft_dat=%3Cproquest_cross%3E2355908213%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2355908213&rft_id=info:pmid/&rfr_iscdi=true