A class of second-order McKean–Vlasov stochastic evolution equations driven by fractional Brownian motion and Poisson jumps

This paper focuses on a class of second-order McKean–Vlasov stochastic evolution equations driven by a fractional Brownian motion and Poisson jumps. Specifically, we allow nonlinearities and the jump term to depend not only of the state of the solution, but also on the corresponding probability law...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & mathematics with applications (1987) 2020-01, Vol.79 (2), p.391-406
Hauptverfasser: McKibben, Mark A., Webster, Micah
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 406
container_issue 2
container_start_page 391
container_title Computers & mathematics with applications (1987)
container_volume 79
creator McKibben, Mark A.
Webster, Micah
description This paper focuses on a class of second-order McKean–Vlasov stochastic evolution equations driven by a fractional Brownian motion and Poisson jumps. Specifically, we allow nonlinearities and the jump term to depend not only of the state of the solution, but also on the corresponding probability law of the state. The global existence and uniqueness of mild solutions is established under various growth conditions, and a related stability result is discussed. An example is presented to illustrate the applicability of the theory.
doi_str_mv 10.1016/j.camwa.2019.07.013
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2355277980</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0898122119303517</els_id><sourcerecordid>2355277980</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-1f8190d60e7a72835812c7e49c2980711a4b897e1a5831711a5632f3fdf3371c3</originalsourceid><addsrcrecordid>eNp9UMFO3DAQtaoidQv9gl4scU7qsTexc-CwrGiLAMEBerWMM1Ed7ca7nmQRByT-gT_kS0h2e-5p3sy89zTzGPsOIgcB5Y8292795HIpoMqFzgWoT2wGRqtMl6X5zGbCVCYDKeEL-0rUCiHmSooZe1lwv3JEPDac0MeuzmKqMfEbf4Wue399-zOu445TH_1fR33wHHdxNfQhdhy3g5sA8TqFHXb88Zk3yflp5lb8PMWnLriOr-Oe7rqa38VANOJ2WG_ohB01bkX47V89Zg8_L-6Xv7Pr21-Xy8V15pUu-wwaA5WoS4HaaWlUYUB6jfPKy8oIDeDmj6bSCK4wCqa-KJVsVFM3Smnw6pidHnw3KW4HpN62cUjjiWSlKgqp9egzstSB5VMkStjYTQprl54tCDvlbFu7z9lOOVuh7ZjzqDo7qHB8YBcwWfIBO491SOh7W8fwX_0HdS2JSg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2355277980</pqid></control><display><type>article</type><title>A class of second-order McKean–Vlasov stochastic evolution equations driven by fractional Brownian motion and Poisson jumps</title><source>Elsevier ScienceDirect Journals Complete</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>McKibben, Mark A. ; Webster, Micah</creator><creatorcontrib>McKibben, Mark A. ; Webster, Micah</creatorcontrib><description>This paper focuses on a class of second-order McKean–Vlasov stochastic evolution equations driven by a fractional Brownian motion and Poisson jumps. Specifically, we allow nonlinearities and the jump term to depend not only of the state of the solution, but also on the corresponding probability law of the state. The global existence and uniqueness of mild solutions is established under various growth conditions, and a related stability result is discussed. An example is presented to illustrate the applicability of the theory.</description><identifier>ISSN: 0898-1221</identifier><identifier>EISSN: 1873-7668</identifier><identifier>DOI: 10.1016/j.camwa.2019.07.013</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Brownian motion ; Cosine family ; Evolution ; Fractional Brownian motion ; Mathematical analysis ; McKean–Vlasov ; Poisson jumps ; Second-order equation ; Stochastic evolution equation</subject><ispartof>Computers &amp; mathematics with applications (1987), 2020-01, Vol.79 (2), p.391-406</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jan 15, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c376t-1f8190d60e7a72835812c7e49c2980711a4b897e1a5831711a5632f3fdf3371c3</citedby><cites>FETCH-LOGICAL-c376t-1f8190d60e7a72835812c7e49c2980711a4b897e1a5831711a5632f3fdf3371c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.camwa.2019.07.013$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27907,27908,45978</link.rule.ids></links><search><creatorcontrib>McKibben, Mark A.</creatorcontrib><creatorcontrib>Webster, Micah</creatorcontrib><title>A class of second-order McKean–Vlasov stochastic evolution equations driven by fractional Brownian motion and Poisson jumps</title><title>Computers &amp; mathematics with applications (1987)</title><description>This paper focuses on a class of second-order McKean–Vlasov stochastic evolution equations driven by a fractional Brownian motion and Poisson jumps. Specifically, we allow nonlinearities and the jump term to depend not only of the state of the solution, but also on the corresponding probability law of the state. The global existence and uniqueness of mild solutions is established under various growth conditions, and a related stability result is discussed. An example is presented to illustrate the applicability of the theory.</description><subject>Brownian motion</subject><subject>Cosine family</subject><subject>Evolution</subject><subject>Fractional Brownian motion</subject><subject>Mathematical analysis</subject><subject>McKean–Vlasov</subject><subject>Poisson jumps</subject><subject>Second-order equation</subject><subject>Stochastic evolution equation</subject><issn>0898-1221</issn><issn>1873-7668</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9UMFO3DAQtaoidQv9gl4scU7qsTexc-CwrGiLAMEBerWMM1Ed7ca7nmQRByT-gT_kS0h2e-5p3sy89zTzGPsOIgcB5Y8292795HIpoMqFzgWoT2wGRqtMl6X5zGbCVCYDKeEL-0rUCiHmSooZe1lwv3JEPDac0MeuzmKqMfEbf4Wue399-zOu445TH_1fR33wHHdxNfQhdhy3g5sA8TqFHXb88Zk3yflp5lb8PMWnLriOr-Oe7rqa38VANOJ2WG_ohB01bkX47V89Zg8_L-6Xv7Pr21-Xy8V15pUu-wwaA5WoS4HaaWlUYUB6jfPKy8oIDeDmj6bSCK4wCqa-KJVsVFM3Smnw6pidHnw3KW4HpN62cUjjiWSlKgqp9egzstSB5VMkStjYTQprl54tCDvlbFu7z9lOOVuh7ZjzqDo7qHB8YBcwWfIBO491SOh7W8fwX_0HdS2JSg</recordid><startdate>20200115</startdate><enddate>20200115</enddate><creator>McKibben, Mark A.</creator><creator>Webster, Micah</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20200115</creationdate><title>A class of second-order McKean–Vlasov stochastic evolution equations driven by fractional Brownian motion and Poisson jumps</title><author>McKibben, Mark A. ; Webster, Micah</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-1f8190d60e7a72835812c7e49c2980711a4b897e1a5831711a5632f3fdf3371c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Brownian motion</topic><topic>Cosine family</topic><topic>Evolution</topic><topic>Fractional Brownian motion</topic><topic>Mathematical analysis</topic><topic>McKean–Vlasov</topic><topic>Poisson jumps</topic><topic>Second-order equation</topic><topic>Stochastic evolution equation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McKibben, Mark A.</creatorcontrib><creatorcontrib>Webster, Micah</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers &amp; mathematics with applications (1987)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McKibben, Mark A.</au><au>Webster, Micah</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A class of second-order McKean–Vlasov stochastic evolution equations driven by fractional Brownian motion and Poisson jumps</atitle><jtitle>Computers &amp; mathematics with applications (1987)</jtitle><date>2020-01-15</date><risdate>2020</risdate><volume>79</volume><issue>2</issue><spage>391</spage><epage>406</epage><pages>391-406</pages><issn>0898-1221</issn><eissn>1873-7668</eissn><abstract>This paper focuses on a class of second-order McKean–Vlasov stochastic evolution equations driven by a fractional Brownian motion and Poisson jumps. Specifically, we allow nonlinearities and the jump term to depend not only of the state of the solution, but also on the corresponding probability law of the state. The global existence and uniqueness of mild solutions is established under various growth conditions, and a related stability result is discussed. An example is presented to illustrate the applicability of the theory.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.camwa.2019.07.013</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0898-1221
ispartof Computers & mathematics with applications (1987), 2020-01, Vol.79 (2), p.391-406
issn 0898-1221
1873-7668
language eng
recordid cdi_proquest_journals_2355277980
source Elsevier ScienceDirect Journals Complete; EZB-FREE-00999 freely available EZB journals
subjects Brownian motion
Cosine family
Evolution
Fractional Brownian motion
Mathematical analysis
McKean–Vlasov
Poisson jumps
Second-order equation
Stochastic evolution equation
title A class of second-order McKean–Vlasov stochastic evolution equations driven by fractional Brownian motion and Poisson jumps
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T04%3A10%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20class%20of%20second-order%20McKean%E2%80%93Vlasov%20stochastic%20evolution%20equations%20driven%20by%20fractional%20Brownian%20motion%20and%20Poisson%20jumps&rft.jtitle=Computers%20&%20mathematics%20with%20applications%20(1987)&rft.au=McKibben,%20Mark%20A.&rft.date=2020-01-15&rft.volume=79&rft.issue=2&rft.spage=391&rft.epage=406&rft.pages=391-406&rft.issn=0898-1221&rft.eissn=1873-7668&rft_id=info:doi/10.1016/j.camwa.2019.07.013&rft_dat=%3Cproquest_cross%3E2355277980%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2355277980&rft_id=info:pmid/&rft_els_id=S0898122119303517&rfr_iscdi=true