A class of second-order McKean–Vlasov stochastic evolution equations driven by fractional Brownian motion and Poisson jumps
This paper focuses on a class of second-order McKean–Vlasov stochastic evolution equations driven by a fractional Brownian motion and Poisson jumps. Specifically, we allow nonlinearities and the jump term to depend not only of the state of the solution, but also on the corresponding probability law...
Gespeichert in:
Veröffentlicht in: | Computers & mathematics with applications (1987) 2020-01, Vol.79 (2), p.391-406 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 406 |
---|---|
container_issue | 2 |
container_start_page | 391 |
container_title | Computers & mathematics with applications (1987) |
container_volume | 79 |
creator | McKibben, Mark A. Webster, Micah |
description | This paper focuses on a class of second-order McKean–Vlasov stochastic evolution equations driven by a fractional Brownian motion and Poisson jumps. Specifically, we allow nonlinearities and the jump term to depend not only of the state of the solution, but also on the corresponding probability law of the state. The global existence and uniqueness of mild solutions is established under various growth conditions, and a related stability result is discussed. An example is presented to illustrate the applicability of the theory. |
doi_str_mv | 10.1016/j.camwa.2019.07.013 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2355277980</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0898122119303517</els_id><sourcerecordid>2355277980</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-1f8190d60e7a72835812c7e49c2980711a4b897e1a5831711a5632f3fdf3371c3</originalsourceid><addsrcrecordid>eNp9UMFO3DAQtaoidQv9gl4scU7qsTexc-CwrGiLAMEBerWMM1Ed7ca7nmQRByT-gT_kS0h2e-5p3sy89zTzGPsOIgcB5Y8292795HIpoMqFzgWoT2wGRqtMl6X5zGbCVCYDKeEL-0rUCiHmSooZe1lwv3JEPDac0MeuzmKqMfEbf4Wue399-zOu445TH_1fR33wHHdxNfQhdhy3g5sA8TqFHXb88Zk3yflp5lb8PMWnLriOr-Oe7rqa38VANOJ2WG_ohB01bkX47V89Zg8_L-6Xv7Pr21-Xy8V15pUu-wwaA5WoS4HaaWlUYUB6jfPKy8oIDeDmj6bSCK4wCqa-KJVsVFM3Smnw6pidHnw3KW4HpN62cUjjiWSlKgqp9egzstSB5VMkStjYTQprl54tCDvlbFu7z9lOOVuh7ZjzqDo7qHB8YBcwWfIBO491SOh7W8fwX_0HdS2JSg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2355277980</pqid></control><display><type>article</type><title>A class of second-order McKean–Vlasov stochastic evolution equations driven by fractional Brownian motion and Poisson jumps</title><source>Elsevier ScienceDirect Journals Complete</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>McKibben, Mark A. ; Webster, Micah</creator><creatorcontrib>McKibben, Mark A. ; Webster, Micah</creatorcontrib><description>This paper focuses on a class of second-order McKean–Vlasov stochastic evolution equations driven by a fractional Brownian motion and Poisson jumps. Specifically, we allow nonlinearities and the jump term to depend not only of the state of the solution, but also on the corresponding probability law of the state. The global existence and uniqueness of mild solutions is established under various growth conditions, and a related stability result is discussed. An example is presented to illustrate the applicability of the theory.</description><identifier>ISSN: 0898-1221</identifier><identifier>EISSN: 1873-7668</identifier><identifier>DOI: 10.1016/j.camwa.2019.07.013</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Brownian motion ; Cosine family ; Evolution ; Fractional Brownian motion ; Mathematical analysis ; McKean–Vlasov ; Poisson jumps ; Second-order equation ; Stochastic evolution equation</subject><ispartof>Computers & mathematics with applications (1987), 2020-01, Vol.79 (2), p.391-406</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jan 15, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c376t-1f8190d60e7a72835812c7e49c2980711a4b897e1a5831711a5632f3fdf3371c3</citedby><cites>FETCH-LOGICAL-c376t-1f8190d60e7a72835812c7e49c2980711a4b897e1a5831711a5632f3fdf3371c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.camwa.2019.07.013$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27907,27908,45978</link.rule.ids></links><search><creatorcontrib>McKibben, Mark A.</creatorcontrib><creatorcontrib>Webster, Micah</creatorcontrib><title>A class of second-order McKean–Vlasov stochastic evolution equations driven by fractional Brownian motion and Poisson jumps</title><title>Computers & mathematics with applications (1987)</title><description>This paper focuses on a class of second-order McKean–Vlasov stochastic evolution equations driven by a fractional Brownian motion and Poisson jumps. Specifically, we allow nonlinearities and the jump term to depend not only of the state of the solution, but also on the corresponding probability law of the state. The global existence and uniqueness of mild solutions is established under various growth conditions, and a related stability result is discussed. An example is presented to illustrate the applicability of the theory.</description><subject>Brownian motion</subject><subject>Cosine family</subject><subject>Evolution</subject><subject>Fractional Brownian motion</subject><subject>Mathematical analysis</subject><subject>McKean–Vlasov</subject><subject>Poisson jumps</subject><subject>Second-order equation</subject><subject>Stochastic evolution equation</subject><issn>0898-1221</issn><issn>1873-7668</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9UMFO3DAQtaoidQv9gl4scU7qsTexc-CwrGiLAMEBerWMM1Ed7ca7nmQRByT-gT_kS0h2e-5p3sy89zTzGPsOIgcB5Y8292795HIpoMqFzgWoT2wGRqtMl6X5zGbCVCYDKeEL-0rUCiHmSooZe1lwv3JEPDac0MeuzmKqMfEbf4Wue399-zOu445TH_1fR33wHHdxNfQhdhy3g5sA8TqFHXb88Zk3yflp5lb8PMWnLriOr-Oe7rqa38VANOJ2WG_ohB01bkX47V89Zg8_L-6Xv7Pr21-Xy8V15pUu-wwaA5WoS4HaaWlUYUB6jfPKy8oIDeDmj6bSCK4wCqa-KJVsVFM3Smnw6pidHnw3KW4HpN62cUjjiWSlKgqp9egzstSB5VMkStjYTQprl54tCDvlbFu7z9lOOVuh7ZjzqDo7qHB8YBcwWfIBO491SOh7W8fwX_0HdS2JSg</recordid><startdate>20200115</startdate><enddate>20200115</enddate><creator>McKibben, Mark A.</creator><creator>Webster, Micah</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20200115</creationdate><title>A class of second-order McKean–Vlasov stochastic evolution equations driven by fractional Brownian motion and Poisson jumps</title><author>McKibben, Mark A. ; Webster, Micah</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-1f8190d60e7a72835812c7e49c2980711a4b897e1a5831711a5632f3fdf3371c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Brownian motion</topic><topic>Cosine family</topic><topic>Evolution</topic><topic>Fractional Brownian motion</topic><topic>Mathematical analysis</topic><topic>McKean–Vlasov</topic><topic>Poisson jumps</topic><topic>Second-order equation</topic><topic>Stochastic evolution equation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McKibben, Mark A.</creatorcontrib><creatorcontrib>Webster, Micah</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers & mathematics with applications (1987)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McKibben, Mark A.</au><au>Webster, Micah</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A class of second-order McKean–Vlasov stochastic evolution equations driven by fractional Brownian motion and Poisson jumps</atitle><jtitle>Computers & mathematics with applications (1987)</jtitle><date>2020-01-15</date><risdate>2020</risdate><volume>79</volume><issue>2</issue><spage>391</spage><epage>406</epage><pages>391-406</pages><issn>0898-1221</issn><eissn>1873-7668</eissn><abstract>This paper focuses on a class of second-order McKean–Vlasov stochastic evolution equations driven by a fractional Brownian motion and Poisson jumps. Specifically, we allow nonlinearities and the jump term to depend not only of the state of the solution, but also on the corresponding probability law of the state. The global existence and uniqueness of mild solutions is established under various growth conditions, and a related stability result is discussed. An example is presented to illustrate the applicability of the theory.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.camwa.2019.07.013</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0898-1221 |
ispartof | Computers & mathematics with applications (1987), 2020-01, Vol.79 (2), p.391-406 |
issn | 0898-1221 1873-7668 |
language | eng |
recordid | cdi_proquest_journals_2355277980 |
source | Elsevier ScienceDirect Journals Complete; EZB-FREE-00999 freely available EZB journals |
subjects | Brownian motion Cosine family Evolution Fractional Brownian motion Mathematical analysis McKean–Vlasov Poisson jumps Second-order equation Stochastic evolution equation |
title | A class of second-order McKean–Vlasov stochastic evolution equations driven by fractional Brownian motion and Poisson jumps |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T04%3A10%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20class%20of%20second-order%20McKean%E2%80%93Vlasov%20stochastic%20evolution%20equations%20driven%20by%20fractional%20Brownian%20motion%20and%20Poisson%20jumps&rft.jtitle=Computers%20&%20mathematics%20with%20applications%20(1987)&rft.au=McKibben,%20Mark%20A.&rft.date=2020-01-15&rft.volume=79&rft.issue=2&rft.spage=391&rft.epage=406&rft.pages=391-406&rft.issn=0898-1221&rft.eissn=1873-7668&rft_id=info:doi/10.1016/j.camwa.2019.07.013&rft_dat=%3Cproquest_cross%3E2355277980%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2355277980&rft_id=info:pmid/&rft_els_id=S0898122119303517&rfr_iscdi=true |