Barrier properties of high performance PMMA-silica anticorrosion coatings

[Display omitted] •High performance methyl methacrylate-silica anticorrosive coatings with long-term stability.•Correlation of structural characteristics with electrochemical barrier properties.•Modeling of the electrolyte permeation using the two-layer Young approach.•Comparison of electrical equiv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Progress in organic coatings 2020-01, Vol.138, p.105398, Article 105398
Hauptverfasser: Trentin, Andressa, de L. Gasparini, Andressa, Faria, Flávio A., Harb, Samarah V., dos Santos, Fábio C., Pulcinelli, Sandra H., Santilli, Celso V., Hammer, Peter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 105398
container_title Progress in organic coatings
container_volume 138
creator Trentin, Andressa
de L. Gasparini, Andressa
Faria, Flávio A.
Harb, Samarah V.
dos Santos, Fábio C.
Pulcinelli, Sandra H.
Santilli, Celso V.
Hammer, Peter
description [Display omitted] •High performance methyl methacrylate-silica anticorrosive coatings with long-term stability.•Correlation of structural characteristics with electrochemical barrier properties.•Modeling of the electrolyte permeation using the two-layer Young approach.•Comparison of electrical equivalent circuits using constant phase element and Young model. This work reports a detailed investigation of the structural and electrochemical barrier properties of PMMA-silica coatings. Hybrid nanocomposites were prepared by combining the sol-gel method with the polymerization of methyl methacrylate (MMA), using the thermal initiator benzoyl peroxide (BPO), followed by the hydrolytic condensation of tetraethoxysilane (TEOS) and 3-(trimethoxysilyl)propyl methacrylate. Raman spectroscopy and thermal analysis showed that the fine-tuning of the BPO amount, a critical synthesis parameter, improved the polymerization efficiency of MMA, leading to a highly cross-linked hybrid structure. The homogeneous coatings prepared under optimized synthesis conditions presented elevated thermal stability due to improved polymerization of the organic phase. Electrochemical impedance spectroscopy (EIS) showed a quasi-ideal capacitive impedance response in 3.5% NaCl solution, with low frequency impedance modulus of up to 10 GΩ cm2, which remained essentially unchanged during 19 months of immersion. This notable barrier property was modeled by fitting the EIS curves assuming slowly expanding electrolyte uptake, using the two-layer Young approach, and by comparison with the standard equivalent electrical circuit (EEC/CPE) model. The Young model provided valuable information on the time evolution of physical parameters including the thickness of the uptake zone, the conductivity depth-profile and the dielectric constant, among others, evidencing the high performance of the coatings.
doi_str_mv 10.1016/j.porgcoat.2019.105398
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2354825849</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0300944018312566</els_id><sourcerecordid>2354825849</sourcerecordid><originalsourceid>FETCH-LOGICAL-c377t-a7f0648028a6a541012a3c42f465cc3fccbc00a2d58ac099b3e8c5574a2c14a13</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWKt_QRY8b5187WZv1uJHoUUPCt5COs22WdrNmmwF_70pq2dPwwzvzPvOQ8g1hQkFWtw2k86HDXrTTxjQKg0lr9QJGVFV8pxz-nFKRsAB8koIOCcXMTYAUHBejcj83oTgbMi64Dsbemdj5uts6zbbLPW1D3vTos1el8tpHt3OoclM2zv0IfjofJsdjV27iZfkrDa7aK9-65i8Pz68zZ7zxcvTfDZd5MjLss9NWUMhFDBlCiNF-oAZjoLVopCIvEZcIYBha6kMQlWtuFUoZSkMQyoM5WNyM9xNiT8PNva68YfQJkvNuBSKSSWqpCoGFaaYMdhad8HtTfjWFPQRm270HzZ9xKYHbGnxbli06YevREZHdDYhWLtgsddr7_478QMBrnnK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2354825849</pqid></control><display><type>article</type><title>Barrier properties of high performance PMMA-silica anticorrosion coatings</title><source>Access via ScienceDirect (Elsevier)</source><creator>Trentin, Andressa ; de L. Gasparini, Andressa ; Faria, Flávio A. ; Harb, Samarah V. ; dos Santos, Fábio C. ; Pulcinelli, Sandra H. ; Santilli, Celso V. ; Hammer, Peter</creator><creatorcontrib>Trentin, Andressa ; de L. Gasparini, Andressa ; Faria, Flávio A. ; Harb, Samarah V. ; dos Santos, Fábio C. ; Pulcinelli, Sandra H. ; Santilli, Celso V. ; Hammer, Peter</creatorcontrib><description>[Display omitted] •High performance methyl methacrylate-silica anticorrosive coatings with long-term stability.•Correlation of structural characteristics with electrochemical barrier properties.•Modeling of the electrolyte permeation using the two-layer Young approach.•Comparison of electrical equivalent circuits using constant phase element and Young model. This work reports a detailed investigation of the structural and electrochemical barrier properties of PMMA-silica coatings. Hybrid nanocomposites were prepared by combining the sol-gel method with the polymerization of methyl methacrylate (MMA), using the thermal initiator benzoyl peroxide (BPO), followed by the hydrolytic condensation of tetraethoxysilane (TEOS) and 3-(trimethoxysilyl)propyl methacrylate. Raman spectroscopy and thermal analysis showed that the fine-tuning of the BPO amount, a critical synthesis parameter, improved the polymerization efficiency of MMA, leading to a highly cross-linked hybrid structure. The homogeneous coatings prepared under optimized synthesis conditions presented elevated thermal stability due to improved polymerization of the organic phase. Electrochemical impedance spectroscopy (EIS) showed a quasi-ideal capacitive impedance response in 3.5% NaCl solution, with low frequency impedance modulus of up to 10 GΩ cm2, which remained essentially unchanged during 19 months of immersion. This notable barrier property was modeled by fitting the EIS curves assuming slowly expanding electrolyte uptake, using the two-layer Young approach, and by comparison with the standard equivalent electrical circuit (EEC/CPE) model. The Young model provided valuable information on the time evolution of physical parameters including the thickness of the uptake zone, the conductivity depth-profile and the dielectric constant, among others, evidencing the high performance of the coatings.</description><identifier>ISSN: 0300-9440</identifier><identifier>EISSN: 1873-331X</identifier><identifier>DOI: 10.1016/j.porgcoat.2019.105398</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Anticorrosion coating ; Barrier properties ; Benzoyl peroxide ; Chemical synthesis ; Circuits ; Coatings ; Corrosion prevention ; Crosslinking ; Curve fitting ; Electrical resistivity ; Electrochemical impedance spectroscopy ; Hybrid structures ; Mathematical models ; Nanocomposites ; Organic-inorganic hybrid ; Parameters ; Physical properties ; Polymerization ; Polymethyl methacrylate ; Raman spectroscopy ; Silicon dioxide ; Sol-gel process ; Sol-gel processes ; Spectrum analysis ; Submerging ; Tetraethyl orthosilicate ; Thermal analysis ; Thermal stability ; Young model</subject><ispartof>Progress in organic coatings, 2020-01, Vol.138, p.105398, Article 105398</ispartof><rights>2019 Elsevier B.V.</rights><rights>Copyright Elsevier BV Jan 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c377t-a7f0648028a6a541012a3c42f465cc3fccbc00a2d58ac099b3e8c5574a2c14a13</citedby><cites>FETCH-LOGICAL-c377t-a7f0648028a6a541012a3c42f465cc3fccbc00a2d58ac099b3e8c5574a2c14a13</cites><orcidid>0000-0002-3823-0050</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.porgcoat.2019.105398$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Trentin, Andressa</creatorcontrib><creatorcontrib>de L. Gasparini, Andressa</creatorcontrib><creatorcontrib>Faria, Flávio A.</creatorcontrib><creatorcontrib>Harb, Samarah V.</creatorcontrib><creatorcontrib>dos Santos, Fábio C.</creatorcontrib><creatorcontrib>Pulcinelli, Sandra H.</creatorcontrib><creatorcontrib>Santilli, Celso V.</creatorcontrib><creatorcontrib>Hammer, Peter</creatorcontrib><title>Barrier properties of high performance PMMA-silica anticorrosion coatings</title><title>Progress in organic coatings</title><description>[Display omitted] •High performance methyl methacrylate-silica anticorrosive coatings with long-term stability.•Correlation of structural characteristics with electrochemical barrier properties.•Modeling of the electrolyte permeation using the two-layer Young approach.•Comparison of electrical equivalent circuits using constant phase element and Young model. This work reports a detailed investigation of the structural and electrochemical barrier properties of PMMA-silica coatings. Hybrid nanocomposites were prepared by combining the sol-gel method with the polymerization of methyl methacrylate (MMA), using the thermal initiator benzoyl peroxide (BPO), followed by the hydrolytic condensation of tetraethoxysilane (TEOS) and 3-(trimethoxysilyl)propyl methacrylate. Raman spectroscopy and thermal analysis showed that the fine-tuning of the BPO amount, a critical synthesis parameter, improved the polymerization efficiency of MMA, leading to a highly cross-linked hybrid structure. The homogeneous coatings prepared under optimized synthesis conditions presented elevated thermal stability due to improved polymerization of the organic phase. Electrochemical impedance spectroscopy (EIS) showed a quasi-ideal capacitive impedance response in 3.5% NaCl solution, with low frequency impedance modulus of up to 10 GΩ cm2, which remained essentially unchanged during 19 months of immersion. This notable barrier property was modeled by fitting the EIS curves assuming slowly expanding electrolyte uptake, using the two-layer Young approach, and by comparison with the standard equivalent electrical circuit (EEC/CPE) model. The Young model provided valuable information on the time evolution of physical parameters including the thickness of the uptake zone, the conductivity depth-profile and the dielectric constant, among others, evidencing the high performance of the coatings.</description><subject>Anticorrosion coating</subject><subject>Barrier properties</subject><subject>Benzoyl peroxide</subject><subject>Chemical synthesis</subject><subject>Circuits</subject><subject>Coatings</subject><subject>Corrosion prevention</subject><subject>Crosslinking</subject><subject>Curve fitting</subject><subject>Electrical resistivity</subject><subject>Electrochemical impedance spectroscopy</subject><subject>Hybrid structures</subject><subject>Mathematical models</subject><subject>Nanocomposites</subject><subject>Organic-inorganic hybrid</subject><subject>Parameters</subject><subject>Physical properties</subject><subject>Polymerization</subject><subject>Polymethyl methacrylate</subject><subject>Raman spectroscopy</subject><subject>Silicon dioxide</subject><subject>Sol-gel process</subject><subject>Sol-gel processes</subject><subject>Spectrum analysis</subject><subject>Submerging</subject><subject>Tetraethyl orthosilicate</subject><subject>Thermal analysis</subject><subject>Thermal stability</subject><subject>Young model</subject><issn>0300-9440</issn><issn>1873-331X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhoMoWKt_QRY8b5187WZv1uJHoUUPCt5COs22WdrNmmwF_70pq2dPwwzvzPvOQ8g1hQkFWtw2k86HDXrTTxjQKg0lr9QJGVFV8pxz-nFKRsAB8koIOCcXMTYAUHBejcj83oTgbMi64Dsbemdj5uts6zbbLPW1D3vTos1el8tpHt3OoclM2zv0IfjofJsdjV27iZfkrDa7aK9-65i8Pz68zZ7zxcvTfDZd5MjLss9NWUMhFDBlCiNF-oAZjoLVopCIvEZcIYBha6kMQlWtuFUoZSkMQyoM5WNyM9xNiT8PNva68YfQJkvNuBSKSSWqpCoGFaaYMdhad8HtTfjWFPQRm270HzZ9xKYHbGnxbli06YevREZHdDYhWLtgsddr7_478QMBrnnK</recordid><startdate>202001</startdate><enddate>202001</enddate><creator>Trentin, Andressa</creator><creator>de L. Gasparini, Andressa</creator><creator>Faria, Flávio A.</creator><creator>Harb, Samarah V.</creator><creator>dos Santos, Fábio C.</creator><creator>Pulcinelli, Sandra H.</creator><creator>Santilli, Celso V.</creator><creator>Hammer, Peter</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-3823-0050</orcidid></search><sort><creationdate>202001</creationdate><title>Barrier properties of high performance PMMA-silica anticorrosion coatings</title><author>Trentin, Andressa ; de L. Gasparini, Andressa ; Faria, Flávio A. ; Harb, Samarah V. ; dos Santos, Fábio C. ; Pulcinelli, Sandra H. ; Santilli, Celso V. ; Hammer, Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c377t-a7f0648028a6a541012a3c42f465cc3fccbc00a2d58ac099b3e8c5574a2c14a13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Anticorrosion coating</topic><topic>Barrier properties</topic><topic>Benzoyl peroxide</topic><topic>Chemical synthesis</topic><topic>Circuits</topic><topic>Coatings</topic><topic>Corrosion prevention</topic><topic>Crosslinking</topic><topic>Curve fitting</topic><topic>Electrical resistivity</topic><topic>Electrochemical impedance spectroscopy</topic><topic>Hybrid structures</topic><topic>Mathematical models</topic><topic>Nanocomposites</topic><topic>Organic-inorganic hybrid</topic><topic>Parameters</topic><topic>Physical properties</topic><topic>Polymerization</topic><topic>Polymethyl methacrylate</topic><topic>Raman spectroscopy</topic><topic>Silicon dioxide</topic><topic>Sol-gel process</topic><topic>Sol-gel processes</topic><topic>Spectrum analysis</topic><topic>Submerging</topic><topic>Tetraethyl orthosilicate</topic><topic>Thermal analysis</topic><topic>Thermal stability</topic><topic>Young model</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Trentin, Andressa</creatorcontrib><creatorcontrib>de L. Gasparini, Andressa</creatorcontrib><creatorcontrib>Faria, Flávio A.</creatorcontrib><creatorcontrib>Harb, Samarah V.</creatorcontrib><creatorcontrib>dos Santos, Fábio C.</creatorcontrib><creatorcontrib>Pulcinelli, Sandra H.</creatorcontrib><creatorcontrib>Santilli, Celso V.</creatorcontrib><creatorcontrib>Hammer, Peter</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Progress in organic coatings</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Trentin, Andressa</au><au>de L. Gasparini, Andressa</au><au>Faria, Flávio A.</au><au>Harb, Samarah V.</au><au>dos Santos, Fábio C.</au><au>Pulcinelli, Sandra H.</au><au>Santilli, Celso V.</au><au>Hammer, Peter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Barrier properties of high performance PMMA-silica anticorrosion coatings</atitle><jtitle>Progress in organic coatings</jtitle><date>2020-01</date><risdate>2020</risdate><volume>138</volume><spage>105398</spage><pages>105398-</pages><artnum>105398</artnum><issn>0300-9440</issn><eissn>1873-331X</eissn><abstract>[Display omitted] •High performance methyl methacrylate-silica anticorrosive coatings with long-term stability.•Correlation of structural characteristics with electrochemical barrier properties.•Modeling of the electrolyte permeation using the two-layer Young approach.•Comparison of electrical equivalent circuits using constant phase element and Young model. This work reports a detailed investigation of the structural and electrochemical barrier properties of PMMA-silica coatings. Hybrid nanocomposites were prepared by combining the sol-gel method with the polymerization of methyl methacrylate (MMA), using the thermal initiator benzoyl peroxide (BPO), followed by the hydrolytic condensation of tetraethoxysilane (TEOS) and 3-(trimethoxysilyl)propyl methacrylate. Raman spectroscopy and thermal analysis showed that the fine-tuning of the BPO amount, a critical synthesis parameter, improved the polymerization efficiency of MMA, leading to a highly cross-linked hybrid structure. The homogeneous coatings prepared under optimized synthesis conditions presented elevated thermal stability due to improved polymerization of the organic phase. Electrochemical impedance spectroscopy (EIS) showed a quasi-ideal capacitive impedance response in 3.5% NaCl solution, with low frequency impedance modulus of up to 10 GΩ cm2, which remained essentially unchanged during 19 months of immersion. This notable barrier property was modeled by fitting the EIS curves assuming slowly expanding electrolyte uptake, using the two-layer Young approach, and by comparison with the standard equivalent electrical circuit (EEC/CPE) model. The Young model provided valuable information on the time evolution of physical parameters including the thickness of the uptake zone, the conductivity depth-profile and the dielectric constant, among others, evidencing the high performance of the coatings.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.porgcoat.2019.105398</doi><orcidid>https://orcid.org/0000-0002-3823-0050</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0300-9440
ispartof Progress in organic coatings, 2020-01, Vol.138, p.105398, Article 105398
issn 0300-9440
1873-331X
language eng
recordid cdi_proquest_journals_2354825849
source Access via ScienceDirect (Elsevier)
subjects Anticorrosion coating
Barrier properties
Benzoyl peroxide
Chemical synthesis
Circuits
Coatings
Corrosion prevention
Crosslinking
Curve fitting
Electrical resistivity
Electrochemical impedance spectroscopy
Hybrid structures
Mathematical models
Nanocomposites
Organic-inorganic hybrid
Parameters
Physical properties
Polymerization
Polymethyl methacrylate
Raman spectroscopy
Silicon dioxide
Sol-gel process
Sol-gel processes
Spectrum analysis
Submerging
Tetraethyl orthosilicate
Thermal analysis
Thermal stability
Young model
title Barrier properties of high performance PMMA-silica anticorrosion coatings
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T18%3A14%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Barrier%20properties%20of%20high%20performance%20PMMA-silica%20anticorrosion%20coatings&rft.jtitle=Progress%20in%20organic%20coatings&rft.au=Trentin,%20Andressa&rft.date=2020-01&rft.volume=138&rft.spage=105398&rft.pages=105398-&rft.artnum=105398&rft.issn=0300-9440&rft.eissn=1873-331X&rft_id=info:doi/10.1016/j.porgcoat.2019.105398&rft_dat=%3Cproquest_cross%3E2354825849%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2354825849&rft_id=info:pmid/&rft_els_id=S0300944018312566&rfr_iscdi=true