How do normalization schemes affect net spillovers? A replication of the Diebold and Yilmaz (2012) study

•This paper replicates the Diebold and Yilmaz, DY, (2012) study on financial markets connectedness.•The markets are the commodity and the stock, bond, FX for the US.•Similar to DY, we use use the Generalized Forecast Error Variance Decomposition, GEFVD.•We compare normalization schemes to GEVD.•We s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy economics 2019-10, Vol.84, p.104536, Article 104536
Hauptverfasser: Caloia, Francesco Giuseppe, Cipollini, Andrea, Muzzioli, Silvia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 104536
container_title Energy economics
container_volume 84
creator Caloia, Francesco Giuseppe
Cipollini, Andrea
Muzzioli, Silvia
description •This paper replicates the Diebold and Yilmaz, DY, (2012) study on financial markets connectedness.•The markets are the commodity and the stock, bond, FX for the US.•Similar to DY, we use use the Generalized Forecast Error Variance Decomposition, GEFVD.•We compare normalization schemes to GEVD.•We show that a scalar-based normalization is preferable to the row normalization suggested by DY. This paper replicates the Diebold and Yilmaz (2012) study on the connectedness of the commodity market and three other financial markets: the stock market, the bond market, and the FX market, based on the Generalized Forecast Error Variance Decomposition, GEFVD. We show that the net spillover indices (of directional connectedness), used to assess the net contribution of one market to overall risk in the system, are sensitive to the normalization scheme applied to the GEFVD. We show that, considering data generating processes characterized by different degrees of persistence and covariance, a scalar-based normalization of the Generalized Forecast Error Variance Decomposition is preferable to the row normalization suggested by Diebold and Yilmaz since it yields net spillovers free of sign and ranking errors.
doi_str_mv 10.1016/j.eneco.2019.104536
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2354811532</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0140988319303317</els_id><sourcerecordid>2354811532</sourcerecordid><originalsourceid>FETCH-LOGICAL-c507t-c2649153b9c61c3eebd579679b77f4b37fabd8676d58d3f3cc858dbe51251cea3</originalsourceid><addsrcrecordid>eNp9kD9PwzAQxS0EEqXwCVgsscCQYsex4wwIVeWvVIkFBibLsS-qqzQudlrUfnpcwsx0p9N77-5-CF1SMqGEitvlBDowfpITWqVJwZk4QiMqS5YJKukxGhFakKySkp2isxiXhBAuuByhxYv_xtbjzoeVbt1e9853OJoFrCBi3TRgetxBj-Pata3fQoj3eIoDrFtnBrFvcL8A_OCg9q3FurP407UrvcfX6Z78Bsd-Y3fn6KTRbYSLvzpGH0-P77OXbP72_DqbzjPDSdlnJhdFRTmrKyOoYQC15WUlyqouy6aoWdno2kpRCsulZQ0zRqamBk5zTg1oNkZXQ-46-K8NxF4t_SZ0aaXKGS8kTeF5UrFBZYKPMUCj1sGtdNgpStQBqVqqX6TqgFQNSJPrbnBBemDrIKhoHHQGrAuJk7Le_ev_AZl6f9M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2354811532</pqid></control><display><type>article</type><title>How do normalization schemes affect net spillovers? A replication of the Diebold and Yilmaz (2012) study</title><source>PAIS Index</source><source>Access via ScienceDirect (Elsevier)</source><creator>Caloia, Francesco Giuseppe ; Cipollini, Andrea ; Muzzioli, Silvia</creator><creatorcontrib>Caloia, Francesco Giuseppe ; Cipollini, Andrea ; Muzzioli, Silvia</creatorcontrib><description>•This paper replicates the Diebold and Yilmaz, DY, (2012) study on financial markets connectedness.•The markets are the commodity and the stock, bond, FX for the US.•Similar to DY, we use use the Generalized Forecast Error Variance Decomposition, GEFVD.•We compare normalization schemes to GEVD.•We show that a scalar-based normalization is preferable to the row normalization suggested by DY. This paper replicates the Diebold and Yilmaz (2012) study on the connectedness of the commodity market and three other financial markets: the stock market, the bond market, and the FX market, based on the Generalized Forecast Error Variance Decomposition, GEFVD. We show that the net spillover indices (of directional connectedness), used to assess the net contribution of one market to overall risk in the system, are sensitive to the normalization scheme applied to the GEFVD. We show that, considering data generating processes characterized by different degrees of persistence and covariance, a scalar-based normalization of the Generalized Forecast Error Variance Decomposition is preferable to the row normalization suggested by Diebold and Yilmaz since it yields net spillovers free of sign and ranking errors.</description><identifier>ISSN: 0140-9883</identifier><identifier>EISSN: 1873-6181</identifier><identifier>DOI: 10.1016/j.eneco.2019.104536</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>Analysis of covariance ; Bond markets ; Bonds ; Causality ; Commodity markets ; Connectedness ; Covariance ; Decomposition ; Economic forecasting ; Energy economics ; Errors ; Generalized forecast error variance decomposition ; Normalization ; Normalization schemes ; Ratings &amp; rankings ; Securities markets ; Simulation ; Spillover ; Stock exchanges ; Variance ; Vector autoregression models</subject><ispartof>Energy economics, 2019-10, Vol.84, p.104536, Article 104536</ispartof><rights>2019 Elsevier B.V.</rights><rights>Copyright Elsevier Science Ltd. Oct 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c507t-c2649153b9c61c3eebd579679b77f4b37fabd8676d58d3f3cc858dbe51251cea3</citedby><cites>FETCH-LOGICAL-c507t-c2649153b9c61c3eebd579679b77f4b37fabd8676d58d3f3cc858dbe51251cea3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.eneco.2019.104536$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27866,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Caloia, Francesco Giuseppe</creatorcontrib><creatorcontrib>Cipollini, Andrea</creatorcontrib><creatorcontrib>Muzzioli, Silvia</creatorcontrib><title>How do normalization schemes affect net spillovers? A replication of the Diebold and Yilmaz (2012) study</title><title>Energy economics</title><description>•This paper replicates the Diebold and Yilmaz, DY, (2012) study on financial markets connectedness.•The markets are the commodity and the stock, bond, FX for the US.•Similar to DY, we use use the Generalized Forecast Error Variance Decomposition, GEFVD.•We compare normalization schemes to GEVD.•We show that a scalar-based normalization is preferable to the row normalization suggested by DY. This paper replicates the Diebold and Yilmaz (2012) study on the connectedness of the commodity market and three other financial markets: the stock market, the bond market, and the FX market, based on the Generalized Forecast Error Variance Decomposition, GEFVD. We show that the net spillover indices (of directional connectedness), used to assess the net contribution of one market to overall risk in the system, are sensitive to the normalization scheme applied to the GEFVD. We show that, considering data generating processes characterized by different degrees of persistence and covariance, a scalar-based normalization of the Generalized Forecast Error Variance Decomposition is preferable to the row normalization suggested by Diebold and Yilmaz since it yields net spillovers free of sign and ranking errors.</description><subject>Analysis of covariance</subject><subject>Bond markets</subject><subject>Bonds</subject><subject>Causality</subject><subject>Commodity markets</subject><subject>Connectedness</subject><subject>Covariance</subject><subject>Decomposition</subject><subject>Economic forecasting</subject><subject>Energy economics</subject><subject>Errors</subject><subject>Generalized forecast error variance decomposition</subject><subject>Normalization</subject><subject>Normalization schemes</subject><subject>Ratings &amp; rankings</subject><subject>Securities markets</subject><subject>Simulation</subject><subject>Spillover</subject><subject>Stock exchanges</subject><subject>Variance</subject><subject>Vector autoregression models</subject><issn>0140-9883</issn><issn>1873-6181</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>7TQ</sourceid><recordid>eNp9kD9PwzAQxS0EEqXwCVgsscCQYsex4wwIVeWvVIkFBibLsS-qqzQudlrUfnpcwsx0p9N77-5-CF1SMqGEitvlBDowfpITWqVJwZk4QiMqS5YJKukxGhFakKySkp2isxiXhBAuuByhxYv_xtbjzoeVbt1e9853OJoFrCBi3TRgetxBj-Pata3fQoj3eIoDrFtnBrFvcL8A_OCg9q3FurP407UrvcfX6Z78Bsd-Y3fn6KTRbYSLvzpGH0-P77OXbP72_DqbzjPDSdlnJhdFRTmrKyOoYQC15WUlyqouy6aoWdno2kpRCsulZQ0zRqamBk5zTg1oNkZXQ-46-K8NxF4t_SZ0aaXKGS8kTeF5UrFBZYKPMUCj1sGtdNgpStQBqVqqX6TqgFQNSJPrbnBBemDrIKhoHHQGrAuJk7Le_ev_AZl6f9M</recordid><startdate>20191001</startdate><enddate>20191001</enddate><creator>Caloia, Francesco Giuseppe</creator><creator>Cipollini, Andrea</creator><creator>Muzzioli, Silvia</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TA</scope><scope>7TQ</scope><scope>8BJ</scope><scope>8FD</scope><scope>C1K</scope><scope>DHY</scope><scope>DON</scope><scope>FQK</scope><scope>JBE</scope><scope>JG9</scope><scope>SOI</scope></search><sort><creationdate>20191001</creationdate><title>How do normalization schemes affect net spillovers? A replication of the Diebold and Yilmaz (2012) study</title><author>Caloia, Francesco Giuseppe ; Cipollini, Andrea ; Muzzioli, Silvia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c507t-c2649153b9c61c3eebd579679b77f4b37fabd8676d58d3f3cc858dbe51251cea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Analysis of covariance</topic><topic>Bond markets</topic><topic>Bonds</topic><topic>Causality</topic><topic>Commodity markets</topic><topic>Connectedness</topic><topic>Covariance</topic><topic>Decomposition</topic><topic>Economic forecasting</topic><topic>Energy economics</topic><topic>Errors</topic><topic>Generalized forecast error variance decomposition</topic><topic>Normalization</topic><topic>Normalization schemes</topic><topic>Ratings &amp; rankings</topic><topic>Securities markets</topic><topic>Simulation</topic><topic>Spillover</topic><topic>Stock exchanges</topic><topic>Variance</topic><topic>Vector autoregression models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Caloia, Francesco Giuseppe</creatorcontrib><creatorcontrib>Cipollini, Andrea</creatorcontrib><creatorcontrib>Muzzioli, Silvia</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Materials Business File</collection><collection>PAIS Index</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>PAIS International</collection><collection>PAIS International (Ovid)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>Materials Research Database</collection><collection>Environment Abstracts</collection><jtitle>Energy economics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Caloia, Francesco Giuseppe</au><au>Cipollini, Andrea</au><au>Muzzioli, Silvia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>How do normalization schemes affect net spillovers? A replication of the Diebold and Yilmaz (2012) study</atitle><jtitle>Energy economics</jtitle><date>2019-10-01</date><risdate>2019</risdate><volume>84</volume><spage>104536</spage><pages>104536-</pages><artnum>104536</artnum><issn>0140-9883</issn><eissn>1873-6181</eissn><abstract>•This paper replicates the Diebold and Yilmaz, DY, (2012) study on financial markets connectedness.•The markets are the commodity and the stock, bond, FX for the US.•Similar to DY, we use use the Generalized Forecast Error Variance Decomposition, GEFVD.•We compare normalization schemes to GEVD.•We show that a scalar-based normalization is preferable to the row normalization suggested by DY. This paper replicates the Diebold and Yilmaz (2012) study on the connectedness of the commodity market and three other financial markets: the stock market, the bond market, and the FX market, based on the Generalized Forecast Error Variance Decomposition, GEFVD. We show that the net spillover indices (of directional connectedness), used to assess the net contribution of one market to overall risk in the system, are sensitive to the normalization scheme applied to the GEFVD. We show that, considering data generating processes characterized by different degrees of persistence and covariance, a scalar-based normalization of the Generalized Forecast Error Variance Decomposition is preferable to the row normalization suggested by Diebold and Yilmaz since it yields net spillovers free of sign and ranking errors.</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><doi>10.1016/j.eneco.2019.104536</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0140-9883
ispartof Energy economics, 2019-10, Vol.84, p.104536, Article 104536
issn 0140-9883
1873-6181
language eng
recordid cdi_proquest_journals_2354811532
source PAIS Index; Access via ScienceDirect (Elsevier)
subjects Analysis of covariance
Bond markets
Bonds
Causality
Commodity markets
Connectedness
Covariance
Decomposition
Economic forecasting
Energy economics
Errors
Generalized forecast error variance decomposition
Normalization
Normalization schemes
Ratings & rankings
Securities markets
Simulation
Spillover
Stock exchanges
Variance
Vector autoregression models
title How do normalization schemes affect net spillovers? A replication of the Diebold and Yilmaz (2012) study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T17%3A03%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=How%20do%20normalization%20schemes%20affect%20net%20spillovers?%20A%20replication%20of%20the%20Diebold%20and%20Yilmaz%20(2012)%20study&rft.jtitle=Energy%20economics&rft.au=Caloia,%20Francesco%20Giuseppe&rft.date=2019-10-01&rft.volume=84&rft.spage=104536&rft.pages=104536-&rft.artnum=104536&rft.issn=0140-9883&rft.eissn=1873-6181&rft_id=info:doi/10.1016/j.eneco.2019.104536&rft_dat=%3Cproquest_cross%3E2354811532%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2354811532&rft_id=info:pmid/&rft_els_id=S0140988319303317&rfr_iscdi=true