Investigating the driving factors of regional CO2 emissions in China using the IDA-PDA-MMI method
•We developed a new comprehensive decomposition method, named IDA-PDA-MMI method.•Our framework was employed to Chinese provincial data from 2000 to 2016.•Technology gap has great potential for CO2 emission reduction.•Energy technology progress and output technology progress decreased regional CO2 e...
Gespeichert in:
Veröffentlicht in: | Energy economics 2019-10, Vol.84, p.104521, Article 104521 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 104521 |
container_title | Energy economics |
container_volume | 84 |
creator | Zha, Donglan Yang, Guanglei Wang, Qunwei |
description | •We developed a new comprehensive decomposition method, named IDA-PDA-MMI method.•Our framework was employed to Chinese provincial data from 2000 to 2016.•Technology gap has great potential for CO2 emission reduction.•Energy technology progress and output technology progress decreased regional CO2 emissions.
In this paper, we systematically summarized existing research on the driving factors of CO2 emissions and found that changes in technology gap may be one of the key driving factors of CO2 emissions. Technology efficiency, technology progress, and technology gap were decomposed by using the Meta-frontier Malmquist index (MMI), which was then combined it with the Index Decomposition Analysis (IDA) and the Production-theoretical Decomposition Analysis (PDA). Our framework was applied to Chinese provincial data from 2000 to 2016. We identified nine factors to explain changes of regional CO2 emissions. Results demonstrate that economic scale, energy technology efficiency, and output technology efficiency increased CO2 emissions in Eastern, Central, and Western regions of China, with the economic scale being the largest contributor. Energy structure, energy intensity, energy technology progress, and output technology progress decreased regional CO2 emissions, with the energy technology progress playing the strongest role. Energy technology gap and output technology gap led to an increase in CO2 emissions in Central China and, to a lesser extent, in Western China. The effects of each driving factor on CO2 emissions varied across provinces. Finally, policy implications are suggested to reduce CO2 emissions in China. |
doi_str_mv | 10.1016/j.eneco.2019.104521 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2354808825</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S014098831930310X</els_id><sourcerecordid>2354808825</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-f7c0e3440ae56406f884dcd6e8d60eb292478b7f2564dc385fe0d1d5a8ae94013</originalsourceid><addsrcrecordid>eNp9UMtOwzAQtBBIlMIXcLHEOcVObNc5cKjCK1KrcoCz5dqb1lEbFzutxN_jErhyWO1rZrUzCN1SMqGEivt2Ah0YP8kJLdOE8ZyeoRGV0yITVNJzNCKUkayUsrhEVzG2hBAuuBwhXXdHiL1b6951a9xvANvgjqe60ab3IWLf4ABr5zu9xdUyx7BzMaY2YtfhauM6jQ_xj1w_zrK3FItFjXfQb7y9RheN3ka4-c1j9PH89F69ZvPlS13N5pkpStFnzdQQKBgjGrhgRDRSMmusAGkFgVVe5mwqV9MmT1trCskbIJZarqWGkhFajNHdcHcf_OchaVKtP4T0dFR5wZkkUuY8oYoBZYKPMUCj9sHtdPhSlKiTl6pVP16qk5dq8DKxHgYWJAFHB0FF46AzYF0A0yvr3b_8bw7qfJM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2354808825</pqid></control><display><type>article</type><title>Investigating the driving factors of regional CO2 emissions in China using the IDA-PDA-MMI method</title><source>PAIS Index</source><source>Elsevier ScienceDirect Journals</source><creator>Zha, Donglan ; Yang, Guanglei ; Wang, Qunwei</creator><creatorcontrib>Zha, Donglan ; Yang, Guanglei ; Wang, Qunwei</creatorcontrib><description>•We developed a new comprehensive decomposition method, named IDA-PDA-MMI method.•Our framework was employed to Chinese provincial data from 2000 to 2016.•Technology gap has great potential for CO2 emission reduction.•Energy technology progress and output technology progress decreased regional CO2 emissions.
In this paper, we systematically summarized existing research on the driving factors of CO2 emissions and found that changes in technology gap may be one of the key driving factors of CO2 emissions. Technology efficiency, technology progress, and technology gap were decomposed by using the Meta-frontier Malmquist index (MMI), which was then combined it with the Index Decomposition Analysis (IDA) and the Production-theoretical Decomposition Analysis (PDA). Our framework was applied to Chinese provincial data from 2000 to 2016. We identified nine factors to explain changes of regional CO2 emissions. Results demonstrate that economic scale, energy technology efficiency, and output technology efficiency increased CO2 emissions in Eastern, Central, and Western regions of China, with the economic scale being the largest contributor. Energy structure, energy intensity, energy technology progress, and output technology progress decreased regional CO2 emissions, with the energy technology progress playing the strongest role. Energy technology gap and output technology gap led to an increase in CO2 emissions in Central China and, to a lesser extent, in Western China. The effects of each driving factor on CO2 emissions varied across provinces. Finally, policy implications are suggested to reduce CO2 emissions in China.</description><identifier>ISSN: 0140-9883</identifier><identifier>EISSN: 1873-6181</identifier><identifier>DOI: 10.1016/j.eneco.2019.104521</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>Carbon dioxide ; Carbon dioxide emissions ; Change agents ; China ; Decomposition ; Driving ; Driving factors ; Economics ; Efficiency ; Emissions ; Energy ; Energy economics ; Energy technology ; Handheld computers ; IDA ; Indexes ; Meta-frontier Malmquist index ; PDA ; Power efficiency ; Provinces ; Regional development ; Technology</subject><ispartof>Energy economics, 2019-10, Vol.84, p.104521, Article 104521</ispartof><rights>2019 Elsevier B.V.</rights><rights>Copyright Elsevier Science Ltd. Oct 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-f7c0e3440ae56406f884dcd6e8d60eb292478b7f2564dc385fe0d1d5a8ae94013</citedby><cites>FETCH-LOGICAL-c396t-f7c0e3440ae56406f884dcd6e8d60eb292478b7f2564dc385fe0d1d5a8ae94013</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S014098831930310X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27843,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Zha, Donglan</creatorcontrib><creatorcontrib>Yang, Guanglei</creatorcontrib><creatorcontrib>Wang, Qunwei</creatorcontrib><title>Investigating the driving factors of regional CO2 emissions in China using the IDA-PDA-MMI method</title><title>Energy economics</title><description>•We developed a new comprehensive decomposition method, named IDA-PDA-MMI method.•Our framework was employed to Chinese provincial data from 2000 to 2016.•Technology gap has great potential for CO2 emission reduction.•Energy technology progress and output technology progress decreased regional CO2 emissions.
In this paper, we systematically summarized existing research on the driving factors of CO2 emissions and found that changes in technology gap may be one of the key driving factors of CO2 emissions. Technology efficiency, technology progress, and technology gap were decomposed by using the Meta-frontier Malmquist index (MMI), which was then combined it with the Index Decomposition Analysis (IDA) and the Production-theoretical Decomposition Analysis (PDA). Our framework was applied to Chinese provincial data from 2000 to 2016. We identified nine factors to explain changes of regional CO2 emissions. Results demonstrate that economic scale, energy technology efficiency, and output technology efficiency increased CO2 emissions in Eastern, Central, and Western regions of China, with the economic scale being the largest contributor. Energy structure, energy intensity, energy technology progress, and output technology progress decreased regional CO2 emissions, with the energy technology progress playing the strongest role. Energy technology gap and output technology gap led to an increase in CO2 emissions in Central China and, to a lesser extent, in Western China. The effects of each driving factor on CO2 emissions varied across provinces. Finally, policy implications are suggested to reduce CO2 emissions in China.</description><subject>Carbon dioxide</subject><subject>Carbon dioxide emissions</subject><subject>Change agents</subject><subject>China</subject><subject>Decomposition</subject><subject>Driving</subject><subject>Driving factors</subject><subject>Economics</subject><subject>Efficiency</subject><subject>Emissions</subject><subject>Energy</subject><subject>Energy economics</subject><subject>Energy technology</subject><subject>Handheld computers</subject><subject>IDA</subject><subject>Indexes</subject><subject>Meta-frontier Malmquist index</subject><subject>PDA</subject><subject>Power efficiency</subject><subject>Provinces</subject><subject>Regional development</subject><subject>Technology</subject><issn>0140-9883</issn><issn>1873-6181</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>7TQ</sourceid><recordid>eNp9UMtOwzAQtBBIlMIXcLHEOcVObNc5cKjCK1KrcoCz5dqb1lEbFzutxN_jErhyWO1rZrUzCN1SMqGEivt2Ah0YP8kJLdOE8ZyeoRGV0yITVNJzNCKUkayUsrhEVzG2hBAuuBwhXXdHiL1b6951a9xvANvgjqe60ab3IWLf4ABr5zu9xdUyx7BzMaY2YtfhauM6jQ_xj1w_zrK3FItFjXfQb7y9RheN3ka4-c1j9PH89F69ZvPlS13N5pkpStFnzdQQKBgjGrhgRDRSMmusAGkFgVVe5mwqV9MmT1trCskbIJZarqWGkhFajNHdcHcf_OchaVKtP4T0dFR5wZkkUuY8oYoBZYKPMUCj9sHtdPhSlKiTl6pVP16qk5dq8DKxHgYWJAFHB0FF46AzYF0A0yvr3b_8bw7qfJM</recordid><startdate>20191001</startdate><enddate>20191001</enddate><creator>Zha, Donglan</creator><creator>Yang, Guanglei</creator><creator>Wang, Qunwei</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TA</scope><scope>7TQ</scope><scope>8BJ</scope><scope>8FD</scope><scope>C1K</scope><scope>DHY</scope><scope>DON</scope><scope>FQK</scope><scope>JBE</scope><scope>JG9</scope><scope>SOI</scope></search><sort><creationdate>20191001</creationdate><title>Investigating the driving factors of regional CO2 emissions in China using the IDA-PDA-MMI method</title><author>Zha, Donglan ; Yang, Guanglei ; Wang, Qunwei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-f7c0e3440ae56406f884dcd6e8d60eb292478b7f2564dc385fe0d1d5a8ae94013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Carbon dioxide</topic><topic>Carbon dioxide emissions</topic><topic>Change agents</topic><topic>China</topic><topic>Decomposition</topic><topic>Driving</topic><topic>Driving factors</topic><topic>Economics</topic><topic>Efficiency</topic><topic>Emissions</topic><topic>Energy</topic><topic>Energy economics</topic><topic>Energy technology</topic><topic>Handheld computers</topic><topic>IDA</topic><topic>Indexes</topic><topic>Meta-frontier Malmquist index</topic><topic>PDA</topic><topic>Power efficiency</topic><topic>Provinces</topic><topic>Regional development</topic><topic>Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zha, Donglan</creatorcontrib><creatorcontrib>Yang, Guanglei</creatorcontrib><creatorcontrib>Wang, Qunwei</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Materials Business File</collection><collection>PAIS Index</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>PAIS International</collection><collection>PAIS International (Ovid)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>Materials Research Database</collection><collection>Environment Abstracts</collection><jtitle>Energy economics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zha, Donglan</au><au>Yang, Guanglei</au><au>Wang, Qunwei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigating the driving factors of regional CO2 emissions in China using the IDA-PDA-MMI method</atitle><jtitle>Energy economics</jtitle><date>2019-10-01</date><risdate>2019</risdate><volume>84</volume><spage>104521</spage><pages>104521-</pages><artnum>104521</artnum><issn>0140-9883</issn><eissn>1873-6181</eissn><abstract>•We developed a new comprehensive decomposition method, named IDA-PDA-MMI method.•Our framework was employed to Chinese provincial data from 2000 to 2016.•Technology gap has great potential for CO2 emission reduction.•Energy technology progress and output technology progress decreased regional CO2 emissions.
In this paper, we systematically summarized existing research on the driving factors of CO2 emissions and found that changes in technology gap may be one of the key driving factors of CO2 emissions. Technology efficiency, technology progress, and technology gap were decomposed by using the Meta-frontier Malmquist index (MMI), which was then combined it with the Index Decomposition Analysis (IDA) and the Production-theoretical Decomposition Analysis (PDA). Our framework was applied to Chinese provincial data from 2000 to 2016. We identified nine factors to explain changes of regional CO2 emissions. Results demonstrate that economic scale, energy technology efficiency, and output technology efficiency increased CO2 emissions in Eastern, Central, and Western regions of China, with the economic scale being the largest contributor. Energy structure, energy intensity, energy technology progress, and output technology progress decreased regional CO2 emissions, with the energy technology progress playing the strongest role. Energy technology gap and output technology gap led to an increase in CO2 emissions in Central China and, to a lesser extent, in Western China. The effects of each driving factor on CO2 emissions varied across provinces. Finally, policy implications are suggested to reduce CO2 emissions in China.</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><doi>10.1016/j.eneco.2019.104521</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0140-9883 |
ispartof | Energy economics, 2019-10, Vol.84, p.104521, Article 104521 |
issn | 0140-9883 1873-6181 |
language | eng |
recordid | cdi_proquest_journals_2354808825 |
source | PAIS Index; Elsevier ScienceDirect Journals |
subjects | Carbon dioxide Carbon dioxide emissions Change agents China Decomposition Driving Driving factors Economics Efficiency Emissions Energy Energy economics Energy technology Handheld computers IDA Indexes Meta-frontier Malmquist index PDA Power efficiency Provinces Regional development Technology |
title | Investigating the driving factors of regional CO2 emissions in China using the IDA-PDA-MMI method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T14%3A16%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigating%20the%20driving%20factors%20of%20regional%20CO2%20emissions%20in%20China%20using%20the%20IDA-PDA-MMI%20method&rft.jtitle=Energy%20economics&rft.au=Zha,%20Donglan&rft.date=2019-10-01&rft.volume=84&rft.spage=104521&rft.pages=104521-&rft.artnum=104521&rft.issn=0140-9883&rft.eissn=1873-6181&rft_id=info:doi/10.1016/j.eneco.2019.104521&rft_dat=%3Cproquest_cross%3E2354808825%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2354808825&rft_id=info:pmid/&rft_els_id=S014098831930310X&rfr_iscdi=true |