Stability analysis for the Whipple bicycle dynamics
It has been known that bicycle stability is closely linked to a pair of ordinary differential equations (ODEs). The linearization technique used to derive these ODEs, nevertheless, has yet to be thoroughly examined. For this purpose, we conduct an analysis of the dynamics of the Whipple bicycle, sta...
Gespeichert in:
Veröffentlicht in: | Multibody system dynamics 2020-03, Vol.48 (3), p.311-335 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 335 |
---|---|
container_issue | 3 |
container_start_page | 311 |
container_title | Multibody system dynamics |
container_volume | 48 |
creator | Xiong, Jiaming Wang, Nannan Liu, Caishan |
description | It has been known that bicycle stability is closely linked to a pair of ordinary differential equations (ODEs). The linearization technique used to derive these ODEs, nevertheless, has yet to be thoroughly examined. For this purpose, we conduct an analysis of the dynamics of the Whipple bicycle, starting with the contact kinematics, using the Gibbs–Appell method. The effort results in a complete nonlinear model with minimal dimensions, from which equilibrium points during the bicycle’s straight and circular motions can be determined. The model can be linearized around these points via a perturbation analysis under no additional assumptions. Given the non-hyperbolic nature of the equilibria, we apply the center manifold theorem to analyze their stability, offering a rigorous derivation of the (well-know) exponential stability of the bicycle in its leaning and steering motions. Finally, a dimensionless index is defined to characterize the influence of physical parameters on the bicycle stability. |
doi_str_mv | 10.1007/s11044-019-09707-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2354778880</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2354778880</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-c5ad86c36367cb4f93aeeead555b7cb1e38a1421b679292d4b9292c3af3140693</originalsourceid><addsrcrecordid>eNp9kE9LxDAUxIMouK5-AU8Fz9EkL2maoyz-gwUPKnoLaZq6WbptTbqHfHuzVvDmaYbHzPD4IXRJyTUlRN5ESgnnmFCFiZJE4nSEFlRIwEyyj-PsoeJYlJycorMYt4QwKrhaIHiZTO07P6XC9KZL0ceiHUIxbVzxvvHj2Lmi9jbZrE3qzc7beI5OWtNFd_GrS_R2f_e6esTr54en1e0aW6BqwlaYpiotlFBKW_NWgXHOmUYIUecDdVAZyhmtS6mYYg2vD2LBtEA5KRUs0dW8O4bha-_ipLfDPuQvo2YguJRVVZGcYnPKhiHG4Fo9Br8zIWlK9AGOnuHoDEf_wNEpl2AuxRzuP134m_6n9Q08kGdF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2354778880</pqid></control><display><type>article</type><title>Stability analysis for the Whipple bicycle dynamics</title><source>SpringerNature Journals</source><creator>Xiong, Jiaming ; Wang, Nannan ; Liu, Caishan</creator><creatorcontrib>Xiong, Jiaming ; Wang, Nannan ; Liu, Caishan</creatorcontrib><description>It has been known that bicycle stability is closely linked to a pair of ordinary differential equations (ODEs). The linearization technique used to derive these ODEs, nevertheless, has yet to be thoroughly examined. For this purpose, we conduct an analysis of the dynamics of the Whipple bicycle, starting with the contact kinematics, using the Gibbs–Appell method. The effort results in a complete nonlinear model with minimal dimensions, from which equilibrium points during the bicycle’s straight and circular motions can be determined. The model can be linearized around these points via a perturbation analysis under no additional assumptions. Given the non-hyperbolic nature of the equilibria, we apply the center manifold theorem to analyze their stability, offering a rigorous derivation of the (well-know) exponential stability of the bicycle in its leaning and steering motions. Finally, a dimensionless index is defined to characterize the influence of physical parameters on the bicycle stability.</description><identifier>ISSN: 1384-5640</identifier><identifier>EISSN: 1573-272X</identifier><identifier>DOI: 10.1007/s11044-019-09707-y</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Automotive Engineering ; Bicycles ; Control ; Differential equations ; Dynamic stability ; Dynamical Systems ; Electrical Engineering ; Engineering ; Kinematics ; Linearization ; Mechanical Engineering ; Motion stability ; Optimization ; Ordinary differential equations ; Perturbation methods ; Physical properties ; Stability analysis ; Steering ; Vibration</subject><ispartof>Multibody system dynamics, 2020-03, Vol.48 (3), p.311-335</ispartof><rights>Springer Nature B.V. 2019</rights><rights>2019© Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-c5ad86c36367cb4f93aeeead555b7cb1e38a1421b679292d4b9292c3af3140693</citedby><cites>FETCH-LOGICAL-c319t-c5ad86c36367cb4f93aeeead555b7cb1e38a1421b679292d4b9292c3af3140693</cites><orcidid>0000-0002-9210-2754</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11044-019-09707-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11044-019-09707-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Xiong, Jiaming</creatorcontrib><creatorcontrib>Wang, Nannan</creatorcontrib><creatorcontrib>Liu, Caishan</creatorcontrib><title>Stability analysis for the Whipple bicycle dynamics</title><title>Multibody system dynamics</title><addtitle>Multibody Syst Dyn</addtitle><description>It has been known that bicycle stability is closely linked to a pair of ordinary differential equations (ODEs). The linearization technique used to derive these ODEs, nevertheless, has yet to be thoroughly examined. For this purpose, we conduct an analysis of the dynamics of the Whipple bicycle, starting with the contact kinematics, using the Gibbs–Appell method. The effort results in a complete nonlinear model with minimal dimensions, from which equilibrium points during the bicycle’s straight and circular motions can be determined. The model can be linearized around these points via a perturbation analysis under no additional assumptions. Given the non-hyperbolic nature of the equilibria, we apply the center manifold theorem to analyze their stability, offering a rigorous derivation of the (well-know) exponential stability of the bicycle in its leaning and steering motions. Finally, a dimensionless index is defined to characterize the influence of physical parameters on the bicycle stability.</description><subject>Automotive Engineering</subject><subject>Bicycles</subject><subject>Control</subject><subject>Differential equations</subject><subject>Dynamic stability</subject><subject>Dynamical Systems</subject><subject>Electrical Engineering</subject><subject>Engineering</subject><subject>Kinematics</subject><subject>Linearization</subject><subject>Mechanical Engineering</subject><subject>Motion stability</subject><subject>Optimization</subject><subject>Ordinary differential equations</subject><subject>Perturbation methods</subject><subject>Physical properties</subject><subject>Stability analysis</subject><subject>Steering</subject><subject>Vibration</subject><issn>1384-5640</issn><issn>1573-272X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAUxIMouK5-AU8Fz9EkL2maoyz-gwUPKnoLaZq6WbptTbqHfHuzVvDmaYbHzPD4IXRJyTUlRN5ESgnnmFCFiZJE4nSEFlRIwEyyj-PsoeJYlJycorMYt4QwKrhaIHiZTO07P6XC9KZL0ceiHUIxbVzxvvHj2Lmi9jbZrE3qzc7beI5OWtNFd_GrS_R2f_e6esTr54en1e0aW6BqwlaYpiotlFBKW_NWgXHOmUYIUecDdVAZyhmtS6mYYg2vD2LBtEA5KRUs0dW8O4bha-_ipLfDPuQvo2YguJRVVZGcYnPKhiHG4Fo9Br8zIWlK9AGOnuHoDEf_wNEpl2AuxRzuP134m_6n9Q08kGdF</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Xiong, Jiaming</creator><creator>Wang, Nannan</creator><creator>Liu, Caishan</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-9210-2754</orcidid></search><sort><creationdate>20200301</creationdate><title>Stability analysis for the Whipple bicycle dynamics</title><author>Xiong, Jiaming ; Wang, Nannan ; Liu, Caishan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-c5ad86c36367cb4f93aeeead555b7cb1e38a1421b679292d4b9292c3af3140693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Automotive Engineering</topic><topic>Bicycles</topic><topic>Control</topic><topic>Differential equations</topic><topic>Dynamic stability</topic><topic>Dynamical Systems</topic><topic>Electrical Engineering</topic><topic>Engineering</topic><topic>Kinematics</topic><topic>Linearization</topic><topic>Mechanical Engineering</topic><topic>Motion stability</topic><topic>Optimization</topic><topic>Ordinary differential equations</topic><topic>Perturbation methods</topic><topic>Physical properties</topic><topic>Stability analysis</topic><topic>Steering</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiong, Jiaming</creatorcontrib><creatorcontrib>Wang, Nannan</creatorcontrib><creatorcontrib>Liu, Caishan</creatorcontrib><collection>CrossRef</collection><jtitle>Multibody system dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiong, Jiaming</au><au>Wang, Nannan</au><au>Liu, Caishan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stability analysis for the Whipple bicycle dynamics</atitle><jtitle>Multibody system dynamics</jtitle><stitle>Multibody Syst Dyn</stitle><date>2020-03-01</date><risdate>2020</risdate><volume>48</volume><issue>3</issue><spage>311</spage><epage>335</epage><pages>311-335</pages><issn>1384-5640</issn><eissn>1573-272X</eissn><abstract>It has been known that bicycle stability is closely linked to a pair of ordinary differential equations (ODEs). The linearization technique used to derive these ODEs, nevertheless, has yet to be thoroughly examined. For this purpose, we conduct an analysis of the dynamics of the Whipple bicycle, starting with the contact kinematics, using the Gibbs–Appell method. The effort results in a complete nonlinear model with minimal dimensions, from which equilibrium points during the bicycle’s straight and circular motions can be determined. The model can be linearized around these points via a perturbation analysis under no additional assumptions. Given the non-hyperbolic nature of the equilibria, we apply the center manifold theorem to analyze their stability, offering a rigorous derivation of the (well-know) exponential stability of the bicycle in its leaning and steering motions. Finally, a dimensionless index is defined to characterize the influence of physical parameters on the bicycle stability.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11044-019-09707-y</doi><tpages>25</tpages><orcidid>https://orcid.org/0000-0002-9210-2754</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1384-5640 |
ispartof | Multibody system dynamics, 2020-03, Vol.48 (3), p.311-335 |
issn | 1384-5640 1573-272X |
language | eng |
recordid | cdi_proquest_journals_2354778880 |
source | SpringerNature Journals |
subjects | Automotive Engineering Bicycles Control Differential equations Dynamic stability Dynamical Systems Electrical Engineering Engineering Kinematics Linearization Mechanical Engineering Motion stability Optimization Ordinary differential equations Perturbation methods Physical properties Stability analysis Steering Vibration |
title | Stability analysis for the Whipple bicycle dynamics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T06%3A00%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stability%20analysis%20for%20the%20Whipple%20bicycle%20dynamics&rft.jtitle=Multibody%20system%20dynamics&rft.au=Xiong,%20Jiaming&rft.date=2020-03-01&rft.volume=48&rft.issue=3&rft.spage=311&rft.epage=335&rft.pages=311-335&rft.issn=1384-5640&rft.eissn=1573-272X&rft_id=info:doi/10.1007/s11044-019-09707-y&rft_dat=%3Cproquest_cross%3E2354778880%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2354778880&rft_id=info:pmid/&rfr_iscdi=true |