Stability analysis for the Whipple bicycle dynamics

It has been known that bicycle stability is closely linked to a pair of ordinary differential equations (ODEs). The linearization technique used to derive these ODEs, nevertheless, has yet to be thoroughly examined. For this purpose, we conduct an analysis of the dynamics of the Whipple bicycle, sta...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Multibody system dynamics 2020-03, Vol.48 (3), p.311-335
Hauptverfasser: Xiong, Jiaming, Wang, Nannan, Liu, Caishan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 335
container_issue 3
container_start_page 311
container_title Multibody system dynamics
container_volume 48
creator Xiong, Jiaming
Wang, Nannan
Liu, Caishan
description It has been known that bicycle stability is closely linked to a pair of ordinary differential equations (ODEs). The linearization technique used to derive these ODEs, nevertheless, has yet to be thoroughly examined. For this purpose, we conduct an analysis of the dynamics of the Whipple bicycle, starting with the contact kinematics, using the Gibbs–Appell method. The effort results in a complete nonlinear model with minimal dimensions, from which equilibrium points during the bicycle’s straight and circular motions can be determined. The model can be linearized around these points via a perturbation analysis under no additional assumptions. Given the non-hyperbolic nature of the equilibria, we apply the center manifold theorem to analyze their stability, offering a rigorous derivation of the (well-know) exponential stability of the bicycle in its leaning and steering motions. Finally, a dimensionless index is defined to characterize the influence of physical parameters on the bicycle stability.
doi_str_mv 10.1007/s11044-019-09707-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2354778880</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2354778880</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-c5ad86c36367cb4f93aeeead555b7cb1e38a1421b679292d4b9292c3af3140693</originalsourceid><addsrcrecordid>eNp9kE9LxDAUxIMouK5-AU8Fz9EkL2maoyz-gwUPKnoLaZq6WbptTbqHfHuzVvDmaYbHzPD4IXRJyTUlRN5ESgnnmFCFiZJE4nSEFlRIwEyyj-PsoeJYlJycorMYt4QwKrhaIHiZTO07P6XC9KZL0ceiHUIxbVzxvvHj2Lmi9jbZrE3qzc7beI5OWtNFd_GrS_R2f_e6esTr54en1e0aW6BqwlaYpiotlFBKW_NWgXHOmUYIUecDdVAZyhmtS6mYYg2vD2LBtEA5KRUs0dW8O4bha-_ipLfDPuQvo2YguJRVVZGcYnPKhiHG4Fo9Br8zIWlK9AGOnuHoDEf_wNEpl2AuxRzuP134m_6n9Q08kGdF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2354778880</pqid></control><display><type>article</type><title>Stability analysis for the Whipple bicycle dynamics</title><source>SpringerNature Journals</source><creator>Xiong, Jiaming ; Wang, Nannan ; Liu, Caishan</creator><creatorcontrib>Xiong, Jiaming ; Wang, Nannan ; Liu, Caishan</creatorcontrib><description>It has been known that bicycle stability is closely linked to a pair of ordinary differential equations (ODEs). The linearization technique used to derive these ODEs, nevertheless, has yet to be thoroughly examined. For this purpose, we conduct an analysis of the dynamics of the Whipple bicycle, starting with the contact kinematics, using the Gibbs–Appell method. The effort results in a complete nonlinear model with minimal dimensions, from which equilibrium points during the bicycle’s straight and circular motions can be determined. The model can be linearized around these points via a perturbation analysis under no additional assumptions. Given the non-hyperbolic nature of the equilibria, we apply the center manifold theorem to analyze their stability, offering a rigorous derivation of the (well-know) exponential stability of the bicycle in its leaning and steering motions. Finally, a dimensionless index is defined to characterize the influence of physical parameters on the bicycle stability.</description><identifier>ISSN: 1384-5640</identifier><identifier>EISSN: 1573-272X</identifier><identifier>DOI: 10.1007/s11044-019-09707-y</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Automotive Engineering ; Bicycles ; Control ; Differential equations ; Dynamic stability ; Dynamical Systems ; Electrical Engineering ; Engineering ; Kinematics ; Linearization ; Mechanical Engineering ; Motion stability ; Optimization ; Ordinary differential equations ; Perturbation methods ; Physical properties ; Stability analysis ; Steering ; Vibration</subject><ispartof>Multibody system dynamics, 2020-03, Vol.48 (3), p.311-335</ispartof><rights>Springer Nature B.V. 2019</rights><rights>2019© Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-c5ad86c36367cb4f93aeeead555b7cb1e38a1421b679292d4b9292c3af3140693</citedby><cites>FETCH-LOGICAL-c319t-c5ad86c36367cb4f93aeeead555b7cb1e38a1421b679292d4b9292c3af3140693</cites><orcidid>0000-0002-9210-2754</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11044-019-09707-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11044-019-09707-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Xiong, Jiaming</creatorcontrib><creatorcontrib>Wang, Nannan</creatorcontrib><creatorcontrib>Liu, Caishan</creatorcontrib><title>Stability analysis for the Whipple bicycle dynamics</title><title>Multibody system dynamics</title><addtitle>Multibody Syst Dyn</addtitle><description>It has been known that bicycle stability is closely linked to a pair of ordinary differential equations (ODEs). The linearization technique used to derive these ODEs, nevertheless, has yet to be thoroughly examined. For this purpose, we conduct an analysis of the dynamics of the Whipple bicycle, starting with the contact kinematics, using the Gibbs–Appell method. The effort results in a complete nonlinear model with minimal dimensions, from which equilibrium points during the bicycle’s straight and circular motions can be determined. The model can be linearized around these points via a perturbation analysis under no additional assumptions. Given the non-hyperbolic nature of the equilibria, we apply the center manifold theorem to analyze their stability, offering a rigorous derivation of the (well-know) exponential stability of the bicycle in its leaning and steering motions. Finally, a dimensionless index is defined to characterize the influence of physical parameters on the bicycle stability.</description><subject>Automotive Engineering</subject><subject>Bicycles</subject><subject>Control</subject><subject>Differential equations</subject><subject>Dynamic stability</subject><subject>Dynamical Systems</subject><subject>Electrical Engineering</subject><subject>Engineering</subject><subject>Kinematics</subject><subject>Linearization</subject><subject>Mechanical Engineering</subject><subject>Motion stability</subject><subject>Optimization</subject><subject>Ordinary differential equations</subject><subject>Perturbation methods</subject><subject>Physical properties</subject><subject>Stability analysis</subject><subject>Steering</subject><subject>Vibration</subject><issn>1384-5640</issn><issn>1573-272X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAUxIMouK5-AU8Fz9EkL2maoyz-gwUPKnoLaZq6WbptTbqHfHuzVvDmaYbHzPD4IXRJyTUlRN5ESgnnmFCFiZJE4nSEFlRIwEyyj-PsoeJYlJycorMYt4QwKrhaIHiZTO07P6XC9KZL0ceiHUIxbVzxvvHj2Lmi9jbZrE3qzc7beI5OWtNFd_GrS_R2f_e6esTr54en1e0aW6BqwlaYpiotlFBKW_NWgXHOmUYIUecDdVAZyhmtS6mYYg2vD2LBtEA5KRUs0dW8O4bha-_ipLfDPuQvo2YguJRVVZGcYnPKhiHG4Fo9Br8zIWlK9AGOnuHoDEf_wNEpl2AuxRzuP134m_6n9Q08kGdF</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Xiong, Jiaming</creator><creator>Wang, Nannan</creator><creator>Liu, Caishan</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-9210-2754</orcidid></search><sort><creationdate>20200301</creationdate><title>Stability analysis for the Whipple bicycle dynamics</title><author>Xiong, Jiaming ; Wang, Nannan ; Liu, Caishan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-c5ad86c36367cb4f93aeeead555b7cb1e38a1421b679292d4b9292c3af3140693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Automotive Engineering</topic><topic>Bicycles</topic><topic>Control</topic><topic>Differential equations</topic><topic>Dynamic stability</topic><topic>Dynamical Systems</topic><topic>Electrical Engineering</topic><topic>Engineering</topic><topic>Kinematics</topic><topic>Linearization</topic><topic>Mechanical Engineering</topic><topic>Motion stability</topic><topic>Optimization</topic><topic>Ordinary differential equations</topic><topic>Perturbation methods</topic><topic>Physical properties</topic><topic>Stability analysis</topic><topic>Steering</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiong, Jiaming</creatorcontrib><creatorcontrib>Wang, Nannan</creatorcontrib><creatorcontrib>Liu, Caishan</creatorcontrib><collection>CrossRef</collection><jtitle>Multibody system dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiong, Jiaming</au><au>Wang, Nannan</au><au>Liu, Caishan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stability analysis for the Whipple bicycle dynamics</atitle><jtitle>Multibody system dynamics</jtitle><stitle>Multibody Syst Dyn</stitle><date>2020-03-01</date><risdate>2020</risdate><volume>48</volume><issue>3</issue><spage>311</spage><epage>335</epage><pages>311-335</pages><issn>1384-5640</issn><eissn>1573-272X</eissn><abstract>It has been known that bicycle stability is closely linked to a pair of ordinary differential equations (ODEs). The linearization technique used to derive these ODEs, nevertheless, has yet to be thoroughly examined. For this purpose, we conduct an analysis of the dynamics of the Whipple bicycle, starting with the contact kinematics, using the Gibbs–Appell method. The effort results in a complete nonlinear model with minimal dimensions, from which equilibrium points during the bicycle’s straight and circular motions can be determined. The model can be linearized around these points via a perturbation analysis under no additional assumptions. Given the non-hyperbolic nature of the equilibria, we apply the center manifold theorem to analyze their stability, offering a rigorous derivation of the (well-know) exponential stability of the bicycle in its leaning and steering motions. Finally, a dimensionless index is defined to characterize the influence of physical parameters on the bicycle stability.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11044-019-09707-y</doi><tpages>25</tpages><orcidid>https://orcid.org/0000-0002-9210-2754</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1384-5640
ispartof Multibody system dynamics, 2020-03, Vol.48 (3), p.311-335
issn 1384-5640
1573-272X
language eng
recordid cdi_proquest_journals_2354778880
source SpringerNature Journals
subjects Automotive Engineering
Bicycles
Control
Differential equations
Dynamic stability
Dynamical Systems
Electrical Engineering
Engineering
Kinematics
Linearization
Mechanical Engineering
Motion stability
Optimization
Ordinary differential equations
Perturbation methods
Physical properties
Stability analysis
Steering
Vibration
title Stability analysis for the Whipple bicycle dynamics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T06%3A00%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stability%20analysis%20for%20the%20Whipple%20bicycle%20dynamics&rft.jtitle=Multibody%20system%20dynamics&rft.au=Xiong,%20Jiaming&rft.date=2020-03-01&rft.volume=48&rft.issue=3&rft.spage=311&rft.epage=335&rft.pages=311-335&rft.issn=1384-5640&rft.eissn=1573-272X&rft_id=info:doi/10.1007/s11044-019-09707-y&rft_dat=%3Cproquest_cross%3E2354778880%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2354778880&rft_id=info:pmid/&rfr_iscdi=true