On Almost Complex Structures on Six-dimensional Products of Spheres

In this paper, we discuss almost complex structures on the sphere S 6 and on the products of spheres S 3 × S 3 , S 1 × S 5 , and S 2 × S 4 . We prove that all almost complex Cayley structures that naturally appear from their embeddings into the Cayley octave algebra Ca are nonintegrable. We obtain e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical sciences (New York, N.Y.) N.Y.), 2020-03, Vol.245 (5), p.568-600
Hauptverfasser: Daurtseva, N. A., Smolentsev, N. K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 600
container_issue 5
container_start_page 568
container_title Journal of mathematical sciences (New York, N.Y.)
container_volume 245
creator Daurtseva, N. A.
Smolentsev, N. K.
description In this paper, we discuss almost complex structures on the sphere S 6 and on the products of spheres S 3 × S 3 , S 1 × S 5 , and S 2 × S 4 . We prove that all almost complex Cayley structures that naturally appear from their embeddings into the Cayley octave algebra Ca are nonintegrable. We obtain expressions for the Nijenhuis tensor and the fundamental form ω for each gauge of the space Ca and prove the nondegeneracy of the form d ω. We show that through each point of a fiber of the twistor bundle over S 6 , a one-parameter family of Cayley structures passes. We describe the set of U (2) × U (2)- invariant Hermitian metrics on S 3 × S 3 and find estimates of the sectional sectional curvature. We consider the space of left-invariant, almost complex structures on S 3 × S 3 = SU (2) × SU (2) and prove the properties of left-invariant structures that yield the maximal value of the norm of the Nijenhuis tensor on the set of left-invariant, orthogonal, almost complex structures.
doi_str_mv 10.1007/s10958-020-04712-5
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2354776259</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A618761470</galeid><sourcerecordid>A618761470</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3735-c730ae3d8b98131b50e229fc299c45045843f0d9035bfdfed9ca5ff711e694553</originalsourceid><addsrcrecordid>eNp9kV1LwzAUhosoOKd_wKuCV15k5qNpmssx_BgMJk6vQ5aezI62mUkL89-bOWEMhuQiIed5DofzJsktwSOCsXgIBEteIEwxwpkgFPGzZEC4YKgQkp_HNxYUMSayy-QqhDWOUl6wQTKZt-m4blzo0olrNjVs00Xne9P1HkLq2nRRbVFZNdCGyrW6Tl-9K2M51my62HxCxK6TC6vrADd_9zD5eHp8n7yg2fx5OhnPkGGCcWQEwxpYWSxlQRhZcgyUSmuolCbjOONFxiwuJWZ8aUsLpTSaWysIgVxmnLNhcrfvu_Huq4fQqbXrfRwqKMp4JkROuTxQK12DqlrrOq9NUwWjxjkpRE4ygSOFTlAraMHr2rVgq_h9xI9O8PGU0FTmpHB_JESmg2230n0Iarp4O2bpnjXeheDBqo2vGu2_FcFql6_a56tivuo3X7XbBttLIcLtCvxhG_9YP8ofpC8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2354776259</pqid></control><display><type>article</type><title>On Almost Complex Structures on Six-dimensional Products of Spheres</title><source>Springer Nature - Complete Springer Journals</source><creator>Daurtseva, N. A. ; Smolentsev, N. K.</creator><creatorcontrib>Daurtseva, N. A. ; Smolentsev, N. K.</creatorcontrib><description>In this paper, we discuss almost complex structures on the sphere S 6 and on the products of spheres S 3 × S 3 , S 1 × S 5 , and S 2 × S 4 . We prove that all almost complex Cayley structures that naturally appear from their embeddings into the Cayley octave algebra Ca are nonintegrable. We obtain expressions for the Nijenhuis tensor and the fundamental form ω for each gauge of the space Ca and prove the nondegeneracy of the form d ω. We show that through each point of a fiber of the twistor bundle over S 6 , a one-parameter family of Cayley structures passes. We describe the set of U (2) × U (2)- invariant Hermitian metrics on S 3 × S 3 and find estimates of the sectional sectional curvature. We consider the space of left-invariant, almost complex structures on S 3 × S 3 = SU (2) × SU (2) and prove the properties of left-invariant structures that yield the maximal value of the norm of the Nijenhuis tensor on the set of left-invariant, orthogonal, almost complex structures.</description><identifier>ISSN: 1072-3374</identifier><identifier>EISSN: 1573-8795</identifier><identifier>DOI: 10.1007/s10958-020-04712-5</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algebra ; Invariants ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Tensors</subject><ispartof>Journal of mathematical sciences (New York, N.Y.), 2020-03, Vol.245 (5), p.568-600</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>COPYRIGHT 2020 Springer</rights><rights>2020© Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3735-c730ae3d8b98131b50e229fc299c45045843f0d9035bfdfed9ca5ff711e694553</citedby><cites>FETCH-LOGICAL-c3735-c730ae3d8b98131b50e229fc299c45045843f0d9035bfdfed9ca5ff711e694553</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10958-020-04712-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10958-020-04712-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids></links><search><creatorcontrib>Daurtseva, N. A.</creatorcontrib><creatorcontrib>Smolentsev, N. K.</creatorcontrib><title>On Almost Complex Structures on Six-dimensional Products of Spheres</title><title>Journal of mathematical sciences (New York, N.Y.)</title><addtitle>J Math Sci</addtitle><description>In this paper, we discuss almost complex structures on the sphere S 6 and on the products of spheres S 3 × S 3 , S 1 × S 5 , and S 2 × S 4 . We prove that all almost complex Cayley structures that naturally appear from their embeddings into the Cayley octave algebra Ca are nonintegrable. We obtain expressions for the Nijenhuis tensor and the fundamental form ω for each gauge of the space Ca and prove the nondegeneracy of the form d ω. We show that through each point of a fiber of the twistor bundle over S 6 , a one-parameter family of Cayley structures passes. We describe the set of U (2) × U (2)- invariant Hermitian metrics on S 3 × S 3 and find estimates of the sectional sectional curvature. We consider the space of left-invariant, almost complex structures on S 3 × S 3 = SU (2) × SU (2) and prove the properties of left-invariant structures that yield the maximal value of the norm of the Nijenhuis tensor on the set of left-invariant, orthogonal, almost complex structures.</description><subject>Algebra</subject><subject>Invariants</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Tensors</subject><issn>1072-3374</issn><issn>1573-8795</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kV1LwzAUhosoOKd_wKuCV15k5qNpmssx_BgMJk6vQ5aezI62mUkL89-bOWEMhuQiIed5DofzJsktwSOCsXgIBEteIEwxwpkgFPGzZEC4YKgQkp_HNxYUMSayy-QqhDWOUl6wQTKZt-m4blzo0olrNjVs00Xne9P1HkLq2nRRbVFZNdCGyrW6Tl-9K2M51my62HxCxK6TC6vrADd_9zD5eHp8n7yg2fx5OhnPkGGCcWQEwxpYWSxlQRhZcgyUSmuolCbjOONFxiwuJWZ8aUsLpTSaWysIgVxmnLNhcrfvu_Huq4fQqbXrfRwqKMp4JkROuTxQK12DqlrrOq9NUwWjxjkpRE4ygSOFTlAraMHr2rVgq_h9xI9O8PGU0FTmpHB_JESmg2230n0Iarp4O2bpnjXeheDBqo2vGu2_FcFql6_a56tivuo3X7XbBttLIcLtCvxhG_9YP8ofpC8</recordid><startdate>20200304</startdate><enddate>20200304</enddate><creator>Daurtseva, N. A.</creator><creator>Smolentsev, N. K.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope></search><sort><creationdate>20200304</creationdate><title>On Almost Complex Structures on Six-dimensional Products of Spheres</title><author>Daurtseva, N. A. ; Smolentsev, N. K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3735-c730ae3d8b98131b50e229fc299c45045843f0d9035bfdfed9ca5ff711e694553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algebra</topic><topic>Invariants</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Tensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Daurtseva, N. A.</creatorcontrib><creatorcontrib>Smolentsev, N. K.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Daurtseva, N. A.</au><au>Smolentsev, N. K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Almost Complex Structures on Six-dimensional Products of Spheres</atitle><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle><stitle>J Math Sci</stitle><date>2020-03-04</date><risdate>2020</risdate><volume>245</volume><issue>5</issue><spage>568</spage><epage>600</epage><pages>568-600</pages><issn>1072-3374</issn><eissn>1573-8795</eissn><abstract>In this paper, we discuss almost complex structures on the sphere S 6 and on the products of spheres S 3 × S 3 , S 1 × S 5 , and S 2 × S 4 . We prove that all almost complex Cayley structures that naturally appear from their embeddings into the Cayley octave algebra Ca are nonintegrable. We obtain expressions for the Nijenhuis tensor and the fundamental form ω for each gauge of the space Ca and prove the nondegeneracy of the form d ω. We show that through each point of a fiber of the twistor bundle over S 6 , a one-parameter family of Cayley structures passes. We describe the set of U (2) × U (2)- invariant Hermitian metrics on S 3 × S 3 and find estimates of the sectional sectional curvature. We consider the space of left-invariant, almost complex structures on S 3 × S 3 = SU (2) × SU (2) and prove the properties of left-invariant structures that yield the maximal value of the norm of the Nijenhuis tensor on the set of left-invariant, orthogonal, almost complex structures.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10958-020-04712-5</doi><tpages>33</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1072-3374
ispartof Journal of mathematical sciences (New York, N.Y.), 2020-03, Vol.245 (5), p.568-600
issn 1072-3374
1573-8795
language eng
recordid cdi_proquest_journals_2354776259
source Springer Nature - Complete Springer Journals
subjects Algebra
Invariants
Mathematical analysis
Mathematics
Mathematics and Statistics
Tensors
title On Almost Complex Structures on Six-dimensional Products of Spheres
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T10%3A57%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Almost%20Complex%20Structures%20on%20Six-dimensional%20Products%20of%20Spheres&rft.jtitle=Journal%20of%20mathematical%20sciences%20(New%20York,%20N.Y.)&rft.au=Daurtseva,%20N.%20A.&rft.date=2020-03-04&rft.volume=245&rft.issue=5&rft.spage=568&rft.epage=600&rft.pages=568-600&rft.issn=1072-3374&rft.eissn=1573-8795&rft_id=info:doi/10.1007/s10958-020-04712-5&rft_dat=%3Cgale_proqu%3EA618761470%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2354776259&rft_id=info:pmid/&rft_galeid=A618761470&rfr_iscdi=true