Prediction of bruise volume propagation of pear during the storage using soft computing methods

Bruises occur under both static and dynamic loadings when the imposed stress on fruit goes over the failure stress of the fruit tissue. Bruise damage is the main reason for fruit quality loss. In this study, the potential of artificial neural network (ANN), adaptive neuro‐fuzzy inference system (ANF...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Food science & nutrition 2020-02, Vol.8 (2), p.884-893
Hauptverfasser: Razavi, Mahsa Sadat, Golmohammadi, Abdollah, Sedghi, Reza, Asghari, Ali
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Bruises occur under both static and dynamic loadings when the imposed stress on fruit goes over the failure stress of the fruit tissue. Bruise damage is the main reason for fruit quality loss. In this study, the potential of artificial neural network (ANN), adaptive neuro‐fuzzy inference system (ANFIS), and multiple regression (MR) techniques to predict bruise volume propagation of pears during the storage time was evaluated. For this purpose, at first, the radius of curvature at loading region was obtained. Samples were divided into five groups and subjected to five force levels. Then, they were kept under storage conditions and at 7‐time intervals after loading tests, bruise volume was calculated using magnetic resonance imaging (MRI) and image processing techniques. Force, storage time, and radius of curvature at loading region were employed as input variables, and bruise volume (BV) was considered as output in the developed models. Multilayer perceptron (MLP) artificial neural network with three layers that includes an input layer (three neurons), two hidden layers (two and nine neurons), and one output layer was used. For the evaluation of models, three criteria (RMSE, VAF, and R2) were calculated. ANN and MR gave the highest and lowest correlation between predicted and actual values, respectively. These results indicate that the ANN techniques can be used to predict pear bruising propagation in storage time. The artificial neural network (ANN), adaptive neuro‐fuzzy inference system (ANFIS), and MR techniques to predict bruise volume propagation of pears during the storage time were evaluated. Models have been constructed based on results obtained from magnetic resonance imaging (MRI) and image processing. ANN techniques can be used to predict pear bruising propagation in storage time.
ISSN:2048-7177
2048-7177
DOI:10.1002/fsn3.1365