An Ultrafast Multibit/Stage Pipelined ADC Testing and Calibration Method

A novel ultrafast and low-cost pipelined analog-to-digital converter (ADC) testing and calibration method is proposed. The ADC nonlinearities are modeled as segmented parameters with interstage gain errors. During the test phase, a pure sine wave is sent as input and the model parameters are estimat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on instrumentation and measurement 2020-03, Vol.69 (3), p.729-738
Hauptverfasser: Chen, Tao, Park, Chulhyun, Chaganti, Shravan K., Silva-Martinez, Jose, Geiger, Randall L., Chen, Degang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 738
container_issue 3
container_start_page 729
container_title IEEE transactions on instrumentation and measurement
container_volume 69
creator Chen, Tao
Park, Chulhyun
Chaganti, Shravan K.
Silva-Martinez, Jose
Geiger, Randall L.
Chen, Degang
description A novel ultrafast and low-cost pipelined analog-to-digital converter (ADC) testing and calibration method is proposed. The ADC nonlinearities are modeled as segmented parameters with interstage gain errors. During the test phase, a pure sine wave is sent as input and the model parameters are estimated from the output data with the system identification method. Significantly, fewer samples are required when compared to traditional histogram testing. The modeled errors are then removed from the digital output codes during the calibration phase. Extensive simulations have been run to verify the correctness and robustness of the proposed method. With just 4000 samples, a 12-bit ADC can be accurately tested and calibrated to achieve less than 1 least significant bit (LSB) integral nonlinearity (INL). Measurement results show that the ADC effective number of bits (ENOB) is improved from 9.7to 10.84 bits and the spurious-free dynamic range (SFDR) is improved by 20 dB after calibration. The chip is fabricated in 40-nm technology and consumes 10.71 mW at a sampling rate of 125 MS/s.
doi_str_mv 10.1109/TIM.2019.2907035
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2354616087</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8692633</ieee_id><sourcerecordid>2354616087</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-1a37eeb759a1627df24c4c664f4aa729721fe2981bd917c02fc284bff019a2753</originalsourceid><addsrcrecordid>eNo9kE1PAjEURRujiYjuTdw0cT3Q706XZBQhgWgirJvOTIsl4wy2ZeG_twTi6m3Ofe--A8AjRhOMkZpulusJQVhNiEISUX4FRphzWSghyDUYIYTLQjEubsFdjHuEkBRMjsBi1sNtl4JxJia4PnbJ1z5NP5PZWfjhD7bzvW3h7KWCGxuT73fQ9C2sTOfrYJIferi26Wto78GNM120D5c5Btv566ZaFKv3t2U1WxUNpTQV2FBpbS25MlgQ2TrCGtYIwRwzRhIlCXaWqBLXrcKyQcQ1pGS1c_k1QySnY_B83nsIw88xV9L74Rj6fFITypnAApUyU-hMNWGIMVinD8F_m_CrMdInXzr70idf-uIrR57OEW-t_cdLoYjIzf8AjhBk6g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2354616087</pqid></control><display><type>article</type><title>An Ultrafast Multibit/Stage Pipelined ADC Testing and Calibration Method</title><source>IEEE Electronic Library (IEL)</source><creator>Chen, Tao ; Park, Chulhyun ; Chaganti, Shravan K. ; Silva-Martinez, Jose ; Geiger, Randall L. ; Chen, Degang</creator><creatorcontrib>Chen, Tao ; Park, Chulhyun ; Chaganti, Shravan K. ; Silva-Martinez, Jose ; Geiger, Randall L. ; Chen, Degang</creatorcontrib><description>A novel ultrafast and low-cost pipelined analog-to-digital converter (ADC) testing and calibration method is proposed. The ADC nonlinearities are modeled as segmented parameters with interstage gain errors. During the test phase, a pure sine wave is sent as input and the model parameters are estimated from the output data with the system identification method. Significantly, fewer samples are required when compared to traditional histogram testing. The modeled errors are then removed from the digital output codes during the calibration phase. Extensive simulations have been run to verify the correctness and robustness of the proposed method. With just 4000 samples, a 12-bit ADC can be accurately tested and calibrated to achieve less than 1 least significant bit (LSB) integral nonlinearity (INL). Measurement results show that the ADC effective number of bits (ENOB) is improved from 9.7to 10.84 bits and the spurious-free dynamic range (SFDR) is improved by 20 dB after calibration. The chip is fabricated in 40-nm technology and consumes 10.71 mW at a sampling rate of 125 MS/s.</description><identifier>ISSN: 0018-9456</identifier><identifier>EISSN: 1557-9662</identifier><identifier>DOI: 10.1109/TIM.2019.2907035</identifier><identifier>CODEN: IEIMAO</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Analog to digital conversion ; Analog to digital converters ; Analog-to-digital converter (ADC) testing ; Calibration ; Computer simulation ; differential nonlinearity (DNL) ; Gain ; Histograms ; integral nonlinearity (INL) ; Linearity ; Mathematical model ; Parameter estimation ; Parameter identification ; pipelined ADC ; Sine waves ; System identification ; Temperature measurement ; Test procedures ; Testing</subject><ispartof>IEEE transactions on instrumentation and measurement, 2020-03, Vol.69 (3), p.729-738</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-1a37eeb759a1627df24c4c664f4aa729721fe2981bd917c02fc284bff019a2753</citedby><cites>FETCH-LOGICAL-c333t-1a37eeb759a1627df24c4c664f4aa729721fe2981bd917c02fc284bff019a2753</cites><orcidid>0000-0002-4980-6836</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8692633$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8692633$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chen, Tao</creatorcontrib><creatorcontrib>Park, Chulhyun</creatorcontrib><creatorcontrib>Chaganti, Shravan K.</creatorcontrib><creatorcontrib>Silva-Martinez, Jose</creatorcontrib><creatorcontrib>Geiger, Randall L.</creatorcontrib><creatorcontrib>Chen, Degang</creatorcontrib><title>An Ultrafast Multibit/Stage Pipelined ADC Testing and Calibration Method</title><title>IEEE transactions on instrumentation and measurement</title><addtitle>TIM</addtitle><description>A novel ultrafast and low-cost pipelined analog-to-digital converter (ADC) testing and calibration method is proposed. The ADC nonlinearities are modeled as segmented parameters with interstage gain errors. During the test phase, a pure sine wave is sent as input and the model parameters are estimated from the output data with the system identification method. Significantly, fewer samples are required when compared to traditional histogram testing. The modeled errors are then removed from the digital output codes during the calibration phase. Extensive simulations have been run to verify the correctness and robustness of the proposed method. With just 4000 samples, a 12-bit ADC can be accurately tested and calibrated to achieve less than 1 least significant bit (LSB) integral nonlinearity (INL). Measurement results show that the ADC effective number of bits (ENOB) is improved from 9.7to 10.84 bits and the spurious-free dynamic range (SFDR) is improved by 20 dB after calibration. The chip is fabricated in 40-nm technology and consumes 10.71 mW at a sampling rate of 125 MS/s.</description><subject>Analog to digital conversion</subject><subject>Analog to digital converters</subject><subject>Analog-to-digital converter (ADC) testing</subject><subject>Calibration</subject><subject>Computer simulation</subject><subject>differential nonlinearity (DNL)</subject><subject>Gain</subject><subject>Histograms</subject><subject>integral nonlinearity (INL)</subject><subject>Linearity</subject><subject>Mathematical model</subject><subject>Parameter estimation</subject><subject>Parameter identification</subject><subject>pipelined ADC</subject><subject>Sine waves</subject><subject>System identification</subject><subject>Temperature measurement</subject><subject>Test procedures</subject><subject>Testing</subject><issn>0018-9456</issn><issn>1557-9662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1PAjEURRujiYjuTdw0cT3Q706XZBQhgWgirJvOTIsl4wy2ZeG_twTi6m3Ofe--A8AjRhOMkZpulusJQVhNiEISUX4FRphzWSghyDUYIYTLQjEubsFdjHuEkBRMjsBi1sNtl4JxJia4PnbJ1z5NP5PZWfjhD7bzvW3h7KWCGxuT73fQ9C2sTOfrYJIferi26Wto78GNM120D5c5Btv566ZaFKv3t2U1WxUNpTQV2FBpbS25MlgQ2TrCGtYIwRwzRhIlCXaWqBLXrcKyQcQ1pGS1c_k1QySnY_B83nsIw88xV9L74Rj6fFITypnAApUyU-hMNWGIMVinD8F_m_CrMdInXzr70idf-uIrR57OEW-t_cdLoYjIzf8AjhBk6g</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Chen, Tao</creator><creator>Park, Chulhyun</creator><creator>Chaganti, Shravan K.</creator><creator>Silva-Martinez, Jose</creator><creator>Geiger, Randall L.</creator><creator>Chen, Degang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-4980-6836</orcidid></search><sort><creationdate>20200301</creationdate><title>An Ultrafast Multibit/Stage Pipelined ADC Testing and Calibration Method</title><author>Chen, Tao ; Park, Chulhyun ; Chaganti, Shravan K. ; Silva-Martinez, Jose ; Geiger, Randall L. ; Chen, Degang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-1a37eeb759a1627df24c4c664f4aa729721fe2981bd917c02fc284bff019a2753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Analog to digital conversion</topic><topic>Analog to digital converters</topic><topic>Analog-to-digital converter (ADC) testing</topic><topic>Calibration</topic><topic>Computer simulation</topic><topic>differential nonlinearity (DNL)</topic><topic>Gain</topic><topic>Histograms</topic><topic>integral nonlinearity (INL)</topic><topic>Linearity</topic><topic>Mathematical model</topic><topic>Parameter estimation</topic><topic>Parameter identification</topic><topic>pipelined ADC</topic><topic>Sine waves</topic><topic>System identification</topic><topic>Temperature measurement</topic><topic>Test procedures</topic><topic>Testing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Tao</creatorcontrib><creatorcontrib>Park, Chulhyun</creatorcontrib><creatorcontrib>Chaganti, Shravan K.</creatorcontrib><creatorcontrib>Silva-Martinez, Jose</creatorcontrib><creatorcontrib>Geiger, Randall L.</creatorcontrib><creatorcontrib>Chen, Degang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on instrumentation and measurement</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chen, Tao</au><au>Park, Chulhyun</au><au>Chaganti, Shravan K.</au><au>Silva-Martinez, Jose</au><au>Geiger, Randall L.</au><au>Chen, Degang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Ultrafast Multibit/Stage Pipelined ADC Testing and Calibration Method</atitle><jtitle>IEEE transactions on instrumentation and measurement</jtitle><stitle>TIM</stitle><date>2020-03-01</date><risdate>2020</risdate><volume>69</volume><issue>3</issue><spage>729</spage><epage>738</epage><pages>729-738</pages><issn>0018-9456</issn><eissn>1557-9662</eissn><coden>IEIMAO</coden><abstract>A novel ultrafast and low-cost pipelined analog-to-digital converter (ADC) testing and calibration method is proposed. The ADC nonlinearities are modeled as segmented parameters with interstage gain errors. During the test phase, a pure sine wave is sent as input and the model parameters are estimated from the output data with the system identification method. Significantly, fewer samples are required when compared to traditional histogram testing. The modeled errors are then removed from the digital output codes during the calibration phase. Extensive simulations have been run to verify the correctness and robustness of the proposed method. With just 4000 samples, a 12-bit ADC can be accurately tested and calibrated to achieve less than 1 least significant bit (LSB) integral nonlinearity (INL). Measurement results show that the ADC effective number of bits (ENOB) is improved from 9.7to 10.84 bits and the spurious-free dynamic range (SFDR) is improved by 20 dB after calibration. The chip is fabricated in 40-nm technology and consumes 10.71 mW at a sampling rate of 125 MS/s.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIM.2019.2907035</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-4980-6836</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9456
ispartof IEEE transactions on instrumentation and measurement, 2020-03, Vol.69 (3), p.729-738
issn 0018-9456
1557-9662
language eng
recordid cdi_proquest_journals_2354616087
source IEEE Electronic Library (IEL)
subjects Analog to digital conversion
Analog to digital converters
Analog-to-digital converter (ADC) testing
Calibration
Computer simulation
differential nonlinearity (DNL)
Gain
Histograms
integral nonlinearity (INL)
Linearity
Mathematical model
Parameter estimation
Parameter identification
pipelined ADC
Sine waves
System identification
Temperature measurement
Test procedures
Testing
title An Ultrafast Multibit/Stage Pipelined ADC Testing and Calibration Method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T04%3A02%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Ultrafast%20Multibit/Stage%20Pipelined%20ADC%20Testing%20and%20Calibration%20Method&rft.jtitle=IEEE%20transactions%20on%20instrumentation%20and%20measurement&rft.au=Chen,%20Tao&rft.date=2020-03-01&rft.volume=69&rft.issue=3&rft.spage=729&rft.epage=738&rft.pages=729-738&rft.issn=0018-9456&rft.eissn=1557-9662&rft.coden=IEIMAO&rft_id=info:doi/10.1109/TIM.2019.2907035&rft_dat=%3Cproquest_RIE%3E2354616087%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2354616087&rft_id=info:pmid/&rft_ieee_id=8692633&rfr_iscdi=true