Formal \(P\)-Gevrey series solutions of first order holomorphic PDEs
We provide a complete and self-contained proof of the Gevrey character, in an analytic function \(P\), of formal power series solutions of some families of first order holomorphic PDEs. Our approach is based on a majorant series technique by applying Nagumo norms joint with a division algorithm.
Gespeichert in:
Veröffentlicht in: | arXiv.org 2022-01 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Carrillo, Sergio A Hurtado, Carlos A |
description | We provide a complete and self-contained proof of the Gevrey character, in an analytic function \(P\), of formal power series solutions of some families of first order holomorphic PDEs. Our approach is based on a majorant series technique by applying Nagumo norms joint with a division algorithm. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2354572570</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2354572570</sourcerecordid><originalsourceid>FETCH-proquest_journals_23545725703</originalsourceid><addsrcrecordid>eNqNjcEKgkAUAJcgSMp_eNClDsK262b31Dp66BiI1Iorq8_e06C_z0Mf0GkOMzALESitD9EpVmolQuZWSqmOiTJGByLNkbrKw31X3PfRxb7JfoAtOcvA6KfRYc-ANdSOeASkpyVo0GOHNDTuAUWa8UYs68qzDX9ci22e3c7XaCB8TZbHssWJ-lmVSpvYzO9E6v-qL-guOfY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2354572570</pqid></control><display><type>article</type><title>Formal \(P\)-Gevrey series solutions of first order holomorphic PDEs</title><source>Free E- Journals</source><creator>Carrillo, Sergio A ; Hurtado, Carlos A</creator><creatorcontrib>Carrillo, Sergio A ; Hurtado, Carlos A</creatorcontrib><description>We provide a complete and self-contained proof of the Gevrey character, in an analytic function \(P\), of formal power series solutions of some families of first order holomorphic PDEs. Our approach is based on a majorant series technique by applying Nagumo norms joint with a division algorithm.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Analytic functions ; Mathematical analysis ; Norms ; Power series</subject><ispartof>arXiv.org, 2022-01</ispartof><rights>2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Carrillo, Sergio A</creatorcontrib><creatorcontrib>Hurtado, Carlos A</creatorcontrib><title>Formal \(P\)-Gevrey series solutions of first order holomorphic PDEs</title><title>arXiv.org</title><description>We provide a complete and self-contained proof of the Gevrey character, in an analytic function \(P\), of formal power series solutions of some families of first order holomorphic PDEs. Our approach is based on a majorant series technique by applying Nagumo norms joint with a division algorithm.</description><subject>Algorithms</subject><subject>Analytic functions</subject><subject>Mathematical analysis</subject><subject>Norms</subject><subject>Power series</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjcEKgkAUAJcgSMp_eNClDsK262b31Dp66BiI1Iorq8_e06C_z0Mf0GkOMzALESitD9EpVmolQuZWSqmOiTJGByLNkbrKw31X3PfRxb7JfoAtOcvA6KfRYc-ANdSOeASkpyVo0GOHNDTuAUWa8UYs68qzDX9ci22e3c7XaCB8TZbHssWJ-lmVSpvYzO9E6v-qL-guOfY</recordid><startdate>20220104</startdate><enddate>20220104</enddate><creator>Carrillo, Sergio A</creator><creator>Hurtado, Carlos A</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220104</creationdate><title>Formal \(P\)-Gevrey series solutions of first order holomorphic PDEs</title><author>Carrillo, Sergio A ; Hurtado, Carlos A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_23545725703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Analytic functions</topic><topic>Mathematical analysis</topic><topic>Norms</topic><topic>Power series</topic><toplevel>online_resources</toplevel><creatorcontrib>Carrillo, Sergio A</creatorcontrib><creatorcontrib>Hurtado, Carlos A</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carrillo, Sergio A</au><au>Hurtado, Carlos A</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Formal \(P\)-Gevrey series solutions of first order holomorphic PDEs</atitle><jtitle>arXiv.org</jtitle><date>2022-01-04</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>We provide a complete and self-contained proof of the Gevrey character, in an analytic function \(P\), of formal power series solutions of some families of first order holomorphic PDEs. Our approach is based on a majorant series technique by applying Nagumo norms joint with a division algorithm.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2022-01 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2354572570 |
source | Free E- Journals |
subjects | Algorithms Analytic functions Mathematical analysis Norms Power series |
title | Formal \(P\)-Gevrey series solutions of first order holomorphic PDEs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T08%3A33%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Formal%20%5C(P%5C)-Gevrey%20series%20solutions%20of%20first%20order%20holomorphic%20PDEs&rft.jtitle=arXiv.org&rft.au=Carrillo,%20Sergio%20A&rft.date=2022-01-04&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2354572570%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2354572570&rft_id=info:pmid/&rfr_iscdi=true |