First predictive simulations for deuterium shattered pellet injection in ASDEX Upgrade

First simulations of deuterium shattered pellet injection into an ASDEX Upgrade H-Mode plasma with the JOREK MHD code are presented. Resistivity is increased by one order of magnitude in most simulations to reduce computational costs and allow for extensive parameter scans. The effect of various phy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of plasmas 2020-02, Vol.27 (2)
Hauptverfasser: Hoelzl, M., Hu, D., Nardon, E., Huijsmans, G. T. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page
container_title Physics of plasmas
container_volume 27
creator Hoelzl, M.
Hu, D.
Nardon, E.
Huijsmans, G. T. A.
description First simulations of deuterium shattered pellet injection into an ASDEX Upgrade H-Mode plasma with the JOREK MHD code are presented. Resistivity is increased by one order of magnitude in most simulations to reduce computational costs and allow for extensive parameter scans. The effect of various physical parameters on MHD activity and thermal quench (TQ) dynamics is studied and MHD influence on ablation is shown. TQs are obtained quickly after injection in most simulations with a typical duration of 100 microseconds, which slows down at lower resistivity. Although the n = 1 magnetic perturbation dominates in the simulations, toroidal harmonics up to n = 10 contribute to stochastization and stochastic transport in the plasma core. The post-TQ density profile remains hollow for a few hundred microseconds. However, when flux surfaces re-form around the magnetic axis, the density becomes monotonic, again, suggesting beneficial behavior for runaway electron avoidance/mitigation. With 1021 atoms injected, TQ is typically incomplete and triggered when the shards reach the q = 2 rational surface. At a larger number of injected atoms, TQ can set in even before the shards reach this surface. For low field side injection considered here, repeated formation of outward convection cells is observed in the ablation region reducing material assimilation. This is due to sudden rise of pressure in the high density cloud when the stochastic region expands further releasing heat from the hot core. After TQ, strong sheared poloidal rotation is created by Maxwell stress, which contributes to re-formation of flux surfaces.
doi_str_mv 10.1063/1.5133099
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2354531756</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2354531756</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-28ba286166d27d324a8f50f73a0b7905241f8314bf40dc64f375c3d6f6d79eb03</originalsourceid><addsrcrecordid>eNp90E9LwzAYBvAgCs7pwW8Q8KTQmf9pj2NuKgw86GS3kDaJZnRrTdKB397ODT0Int7n8ON54QHgEqMRRoLe4hHHlKKiOAIDjPIik0Ky412WKBOCLU_BWYwrhBATPB-A15kPMcE2WOOr5LcWRr_uap18s4nQNQEa2yUbfLeG8V2nPloDW1vXNkG_WdlqJ_sEx8930yVctG9BG3sOTpyuo7043CFYzKYvk4ds_nT_OBnPs4oSmTKSl5rkAgthiDSUMJ07jpykGpWyQJww7HKKWekYMpVgjkpeUSOcMLKwJaJDcLXvbUPz0dmY1KrpwqZ_qQjljFMsuejV9V5VoYkxWKfa4Nc6fCqM1G42hdVhtt7e7G2sfPqe4Qdvm_ALVWvcf_hv8xcj3HsH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2354531756</pqid></control><display><type>article</type><title>First predictive simulations for deuterium shattered pellet injection in ASDEX Upgrade</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Hoelzl, M. ; Hu, D. ; Nardon, E. ; Huijsmans, G. T. A.</creator><creatorcontrib>Hoelzl, M. ; Hu, D. ; Nardon, E. ; Huijsmans, G. T. A. ; ASDEX Upgrade Team ; JOREK Team</creatorcontrib><description>First simulations of deuterium shattered pellet injection into an ASDEX Upgrade H-Mode plasma with the JOREK MHD code are presented. Resistivity is increased by one order of magnitude in most simulations to reduce computational costs and allow for extensive parameter scans. The effect of various physical parameters on MHD activity and thermal quench (TQ) dynamics is studied and MHD influence on ablation is shown. TQs are obtained quickly after injection in most simulations with a typical duration of 100 microseconds, which slows down at lower resistivity. Although the n = 1 magnetic perturbation dominates in the simulations, toroidal harmonics up to n = 10 contribute to stochastization and stochastic transport in the plasma core. The post-TQ density profile remains hollow for a few hundred microseconds. However, when flux surfaces re-form around the magnetic axis, the density becomes monotonic, again, suggesting beneficial behavior for runaway electron avoidance/mitigation. With 1021 atoms injected, TQ is typically incomplete and triggered when the shards reach the q = 2 rational surface. At a larger number of injected atoms, TQ can set in even before the shards reach this surface. For low field side injection considered here, repeated formation of outward convection cells is observed in the ablation region reducing material assimilation. This is due to sudden rise of pressure in the high density cloud when the stochastic region expands further releasing heat from the hot core. After TQ, strong sheared poloidal rotation is created by Maxwell stress, which contributes to re-formation of flux surfaces.</description><identifier>ISSN: 1070-664X</identifier><identifier>EISSN: 1089-7674</identifier><identifier>DOI: 10.1063/1.5133099</identifier><identifier>CODEN: PHPAEN</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Ablative materials ; Atomic properties ; Computer simulation ; Convection cells ; Density ; Deuterium ; Electrical resistivity ; Magnetohydrodynamics ; Parameters ; Perturbation ; Physical properties ; Plasma physics ; Simulation</subject><ispartof>Physics of plasmas, 2020-02, Vol.27 (2)</ispartof><rights>Author(s)</rights><rights>2020 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-28ba286166d27d324a8f50f73a0b7905241f8314bf40dc64f375c3d6f6d79eb03</citedby><cites>FETCH-LOGICAL-c327t-28ba286166d27d324a8f50f73a0b7905241f8314bf40dc64f375c3d6f6d79eb03</cites><orcidid>0000-0002-1435-4892 ; 0000-0001-7921-9176</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/pop/article-lookup/doi/10.1063/1.5133099$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,4512,27924,27925,76384</link.rule.ids></links><search><creatorcontrib>Hoelzl, M.</creatorcontrib><creatorcontrib>Hu, D.</creatorcontrib><creatorcontrib>Nardon, E.</creatorcontrib><creatorcontrib>Huijsmans, G. T. A.</creatorcontrib><creatorcontrib>ASDEX Upgrade Team</creatorcontrib><creatorcontrib>JOREK Team</creatorcontrib><title>First predictive simulations for deuterium shattered pellet injection in ASDEX Upgrade</title><title>Physics of plasmas</title><description>First simulations of deuterium shattered pellet injection into an ASDEX Upgrade H-Mode plasma with the JOREK MHD code are presented. Resistivity is increased by one order of magnitude in most simulations to reduce computational costs and allow for extensive parameter scans. The effect of various physical parameters on MHD activity and thermal quench (TQ) dynamics is studied and MHD influence on ablation is shown. TQs are obtained quickly after injection in most simulations with a typical duration of 100 microseconds, which slows down at lower resistivity. Although the n = 1 magnetic perturbation dominates in the simulations, toroidal harmonics up to n = 10 contribute to stochastization and stochastic transport in the plasma core. The post-TQ density profile remains hollow for a few hundred microseconds. However, when flux surfaces re-form around the magnetic axis, the density becomes monotonic, again, suggesting beneficial behavior for runaway electron avoidance/mitigation. With 1021 atoms injected, TQ is typically incomplete and triggered when the shards reach the q = 2 rational surface. At a larger number of injected atoms, TQ can set in even before the shards reach this surface. For low field side injection considered here, repeated formation of outward convection cells is observed in the ablation region reducing material assimilation. This is due to sudden rise of pressure in the high density cloud when the stochastic region expands further releasing heat from the hot core. After TQ, strong sheared poloidal rotation is created by Maxwell stress, which contributes to re-formation of flux surfaces.</description><subject>Ablative materials</subject><subject>Atomic properties</subject><subject>Computer simulation</subject><subject>Convection cells</subject><subject>Density</subject><subject>Deuterium</subject><subject>Electrical resistivity</subject><subject>Magnetohydrodynamics</subject><subject>Parameters</subject><subject>Perturbation</subject><subject>Physical properties</subject><subject>Plasma physics</subject><subject>Simulation</subject><issn>1070-664X</issn><issn>1089-7674</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp90E9LwzAYBvAgCs7pwW8Q8KTQmf9pj2NuKgw86GS3kDaJZnRrTdKB397ODT0Int7n8ON54QHgEqMRRoLe4hHHlKKiOAIDjPIik0Ky412WKBOCLU_BWYwrhBATPB-A15kPMcE2WOOr5LcWRr_uap18s4nQNQEa2yUbfLeG8V2nPloDW1vXNkG_WdlqJ_sEx8930yVctG9BG3sOTpyuo7043CFYzKYvk4ds_nT_OBnPs4oSmTKSl5rkAgthiDSUMJ07jpykGpWyQJww7HKKWekYMpVgjkpeUSOcMLKwJaJDcLXvbUPz0dmY1KrpwqZ_qQjljFMsuejV9V5VoYkxWKfa4Nc6fCqM1G42hdVhtt7e7G2sfPqe4Qdvm_ALVWvcf_hv8xcj3HsH</recordid><startdate>202002</startdate><enddate>202002</enddate><creator>Hoelzl, M.</creator><creator>Hu, D.</creator><creator>Nardon, E.</creator><creator>Huijsmans, G. T. A.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1435-4892</orcidid><orcidid>https://orcid.org/0000-0001-7921-9176</orcidid></search><sort><creationdate>202002</creationdate><title>First predictive simulations for deuterium shattered pellet injection in ASDEX Upgrade</title><author>Hoelzl, M. ; Hu, D. ; Nardon, E. ; Huijsmans, G. T. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-28ba286166d27d324a8f50f73a0b7905241f8314bf40dc64f375c3d6f6d79eb03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Ablative materials</topic><topic>Atomic properties</topic><topic>Computer simulation</topic><topic>Convection cells</topic><topic>Density</topic><topic>Deuterium</topic><topic>Electrical resistivity</topic><topic>Magnetohydrodynamics</topic><topic>Parameters</topic><topic>Perturbation</topic><topic>Physical properties</topic><topic>Plasma physics</topic><topic>Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hoelzl, M.</creatorcontrib><creatorcontrib>Hu, D.</creatorcontrib><creatorcontrib>Nardon, E.</creatorcontrib><creatorcontrib>Huijsmans, G. T. A.</creatorcontrib><creatorcontrib>ASDEX Upgrade Team</creatorcontrib><creatorcontrib>JOREK Team</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics of plasmas</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hoelzl, M.</au><au>Hu, D.</au><au>Nardon, E.</au><au>Huijsmans, G. T. A.</au><aucorp>ASDEX Upgrade Team</aucorp><aucorp>JOREK Team</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>First predictive simulations for deuterium shattered pellet injection in ASDEX Upgrade</atitle><jtitle>Physics of plasmas</jtitle><date>2020-02</date><risdate>2020</risdate><volume>27</volume><issue>2</issue><issn>1070-664X</issn><eissn>1089-7674</eissn><coden>PHPAEN</coden><abstract>First simulations of deuterium shattered pellet injection into an ASDEX Upgrade H-Mode plasma with the JOREK MHD code are presented. Resistivity is increased by one order of magnitude in most simulations to reduce computational costs and allow for extensive parameter scans. The effect of various physical parameters on MHD activity and thermal quench (TQ) dynamics is studied and MHD influence on ablation is shown. TQs are obtained quickly after injection in most simulations with a typical duration of 100 microseconds, which slows down at lower resistivity. Although the n = 1 magnetic perturbation dominates in the simulations, toroidal harmonics up to n = 10 contribute to stochastization and stochastic transport in the plasma core. The post-TQ density profile remains hollow for a few hundred microseconds. However, when flux surfaces re-form around the magnetic axis, the density becomes monotonic, again, suggesting beneficial behavior for runaway electron avoidance/mitigation. With 1021 atoms injected, TQ is typically incomplete and triggered when the shards reach the q = 2 rational surface. At a larger number of injected atoms, TQ can set in even before the shards reach this surface. For low field side injection considered here, repeated formation of outward convection cells is observed in the ablation region reducing material assimilation. This is due to sudden rise of pressure in the high density cloud when the stochastic region expands further releasing heat from the hot core. After TQ, strong sheared poloidal rotation is created by Maxwell stress, which contributes to re-formation of flux surfaces.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5133099</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-1435-4892</orcidid><orcidid>https://orcid.org/0000-0001-7921-9176</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1070-664X
ispartof Physics of plasmas, 2020-02, Vol.27 (2)
issn 1070-664X
1089-7674
language eng
recordid cdi_proquest_journals_2354531756
source AIP Journals Complete; Alma/SFX Local Collection
subjects Ablative materials
Atomic properties
Computer simulation
Convection cells
Density
Deuterium
Electrical resistivity
Magnetohydrodynamics
Parameters
Perturbation
Physical properties
Plasma physics
Simulation
title First predictive simulations for deuterium shattered pellet injection in ASDEX Upgrade
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T04%3A43%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=First%20predictive%20simulations%20for%20deuterium%20shattered%20pellet%20injection%20in%20ASDEX%20Upgrade&rft.jtitle=Physics%20of%20plasmas&rft.au=Hoelzl,%20M.&rft.aucorp=ASDEX%20Upgrade%20Team&rft.date=2020-02&rft.volume=27&rft.issue=2&rft.issn=1070-664X&rft.eissn=1089-7674&rft.coden=PHPAEN&rft_id=info:doi/10.1063/1.5133099&rft_dat=%3Cproquest_cross%3E2354531756%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2354531756&rft_id=info:pmid/&rfr_iscdi=true