Lattice distortion effect on elastic anisotropy of high entropy alloys

The superior mechanical properties of high-entropy alloys (HEAs) have made an outstanding success in materials science and engineering. Studies to date have been devoted to what the severe lattice distortion induces. However, most researchers focus on its stimulation to plastic deformation instead o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of alloys and compounds 2020-03, Vol.818, p.152876, Article 152876
Hauptverfasser: Yen, Chao-Chun, Huang, Guan-Rong, Tan, Yun-Cheng, Yeh, Han-Wen, Luo, Da-Ji, Hsieh, Kang-Tien, Huang, E-Wen, Yeh, Jien-Wei, Lin, Su-Jien, Wang, Chun-Chieh, Kuo, Chin-Lung, Chang, Shou-Yi, Lo, Yu-Chieh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 152876
container_title Journal of alloys and compounds
container_volume 818
creator Yen, Chao-Chun
Huang, Guan-Rong
Tan, Yun-Cheng
Yeh, Han-Wen
Luo, Da-Ji
Hsieh, Kang-Tien
Huang, E-Wen
Yeh, Jien-Wei
Lin, Su-Jien
Wang, Chun-Chieh
Kuo, Chin-Lung
Chang, Shou-Yi
Lo, Yu-Chieh
description The superior mechanical properties of high-entropy alloys (HEAs) have made an outstanding success in materials science and engineering. Studies to date have been devoted to what the severe lattice distortion induces. However, most researchers focus on its stimulation to plastic deformation instead of scrutinizing the variations on elasticity. Compared with conventional alloys, HEAs may perform disproportionate elasticity with uneven local lattice strain resulting from the severe lattice distortion. Therefore, it is necessary to survey its influence on the mechanical properties of HEAs systematically. In this study, the Lennard-Jones (LJ) potential, the embedded atom method (EAM) potential, and the modified embedded atom method (MEAM), are respectively conducted to investigate the lattice distortion effect on Young’s modulus E (hkl) and Poisson’s ratio ν (hkl, θ) along [100], [110], and [111] loading directions for several fcc metals composed of 1 ∼ 5 atomic types, including Ni, Ni98W2, Ni96W4, FeCrNi, and CoNiCrFeMn HEAs. Also, a method is used to analyze the performance of the individual element on the elastic properties in the HEA environment. As a result, it can be unveiled that the effect of electron density inconsistency is more dominant than the effect of lattice distortion associated with the atomic size difference. The electronic configuration in the HEA environment plays a major role in elastic anisotropy while the difference of the atomic radii does the minor one. The anisotropy of CoNiCrFeMn HEA analyzed by this work is also consistent with in-situ neutron diffraction measurements. [Display omitted] •The elastic anisotropy for high-entropy alloys is investigated through molecular dynamics and statics.•The lattice distortion will enhance elastic anisotropy in dilute solid-solution alloys.•For high-entropy alloys, the electron density inconsistency is more dominant than the lattice distortion in elasticity.•A simple method is proposed to analyze the influence of individual element on Young’s modulus of high entropy alloys.
doi_str_mv 10.1016/j.jallcom.2019.152876
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2354310300</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925838819341222</els_id><sourcerecordid>2354310300</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-32832b9492cce1a61b4535d67faa2f0a2266890936a3f74632298ec7d6743b53</originalsourceid><addsrcrecordid>eNqFkEFLAzEQhYMoWKs_QVjwvGuS2c0mJ5FiVVjw0ntIs4nNst3UJBX6703Z3j3NDPPePOZD6JHgimDCnodqUOOo_b6imIiKNJS37AotCG-hrBkT12iBBW1KDpzforsYB4yzEsgCrTuVktOm6F1MPiTnp8JYa3Qqzt2oYt4WanLRp-APp8LbYue-d4WZ5jkn-1O8RzdWjdE8XOoSbdZvm9VH2X29f65eu1LXGFIJlAPdilpQrQ1RjGzrBpqetVYparGilDEusACmwLY1A0oFN7rNihq2DSzR03z2EPzP0cQkB38MU06UFJoaCAaMs6qZVTr4GIOx8hDcXoWTJFieiclBXojJMzE5E8u-l9ln8ge_zgQZtTOTNr0LGYjsvfvnwh_BHHYx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2354310300</pqid></control><display><type>article</type><title>Lattice distortion effect on elastic anisotropy of high entropy alloys</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Yen, Chao-Chun ; Huang, Guan-Rong ; Tan, Yun-Cheng ; Yeh, Han-Wen ; Luo, Da-Ji ; Hsieh, Kang-Tien ; Huang, E-Wen ; Yeh, Jien-Wei ; Lin, Su-Jien ; Wang, Chun-Chieh ; Kuo, Chin-Lung ; Chang, Shou-Yi ; Lo, Yu-Chieh</creator><creatorcontrib>Yen, Chao-Chun ; Huang, Guan-Rong ; Tan, Yun-Cheng ; Yeh, Han-Wen ; Luo, Da-Ji ; Hsieh, Kang-Tien ; Huang, E-Wen ; Yeh, Jien-Wei ; Lin, Su-Jien ; Wang, Chun-Chieh ; Kuo, Chin-Lung ; Chang, Shou-Yi ; Lo, Yu-Chieh</creatorcontrib><description>The superior mechanical properties of high-entropy alloys (HEAs) have made an outstanding success in materials science and engineering. Studies to date have been devoted to what the severe lattice distortion induces. However, most researchers focus on its stimulation to plastic deformation instead of scrutinizing the variations on elasticity. Compared with conventional alloys, HEAs may perform disproportionate elasticity with uneven local lattice strain resulting from the severe lattice distortion. Therefore, it is necessary to survey its influence on the mechanical properties of HEAs systematically. In this study, the Lennard-Jones (LJ) potential, the embedded atom method (EAM) potential, and the modified embedded atom method (MEAM), are respectively conducted to investigate the lattice distortion effect on Young’s modulus E (hkl) and Poisson’s ratio ν (hkl, θ) along [100], [110], and [111] loading directions for several fcc metals composed of 1 ∼ 5 atomic types, including Ni, Ni98W2, Ni96W4, FeCrNi, and CoNiCrFeMn HEAs. Also, a method is used to analyze the performance of the individual element on the elastic properties in the HEA environment. As a result, it can be unveiled that the effect of electron density inconsistency is more dominant than the effect of lattice distortion associated with the atomic size difference. The electronic configuration in the HEA environment plays a major role in elastic anisotropy while the difference of the atomic radii does the minor one. The anisotropy of CoNiCrFeMn HEA analyzed by this work is also consistent with in-situ neutron diffraction measurements. [Display omitted] •The elastic anisotropy for high-entropy alloys is investigated through molecular dynamics and statics.•The lattice distortion will enhance elastic anisotropy in dilute solid-solution alloys.•For high-entropy alloys, the electron density inconsistency is more dominant than the lattice distortion in elasticity.•A simple method is proposed to analyze the influence of individual element on Young’s modulus of high entropy alloys.</description><identifier>ISSN: 0925-8388</identifier><identifier>EISSN: 1873-4669</identifier><identifier>DOI: 10.1016/j.jallcom.2019.152876</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Anisotropy ; Atomic radius ; Distortion ; Elastic anisotropy ; Elastic properties ; Electron density ; Embedded atom method ; Embedded systems ; High entropy alloys ; Lattice distortion ; Lattice strain ; Materials science ; Mechanical properties ; Modulus of elasticity ; Molecular dynamics ; Neutron diffraction ; Nickel ; Plastic deformation ; Poisson's ratio ; Young’s modulus</subject><ispartof>Journal of alloys and compounds, 2020-03, Vol.818, p.152876, Article 152876</ispartof><rights>2019 Elsevier B.V.</rights><rights>Copyright Elsevier BV Mar 25, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-32832b9492cce1a61b4535d67faa2f0a2266890936a3f74632298ec7d6743b53</citedby><cites>FETCH-LOGICAL-c403t-32832b9492cce1a61b4535d67faa2f0a2266890936a3f74632298ec7d6743b53</cites><orcidid>0000-0003-4986-0661 ; 0000-0002-7117-9154 ; 0000-0003-0595-4383</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jallcom.2019.152876$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Yen, Chao-Chun</creatorcontrib><creatorcontrib>Huang, Guan-Rong</creatorcontrib><creatorcontrib>Tan, Yun-Cheng</creatorcontrib><creatorcontrib>Yeh, Han-Wen</creatorcontrib><creatorcontrib>Luo, Da-Ji</creatorcontrib><creatorcontrib>Hsieh, Kang-Tien</creatorcontrib><creatorcontrib>Huang, E-Wen</creatorcontrib><creatorcontrib>Yeh, Jien-Wei</creatorcontrib><creatorcontrib>Lin, Su-Jien</creatorcontrib><creatorcontrib>Wang, Chun-Chieh</creatorcontrib><creatorcontrib>Kuo, Chin-Lung</creatorcontrib><creatorcontrib>Chang, Shou-Yi</creatorcontrib><creatorcontrib>Lo, Yu-Chieh</creatorcontrib><title>Lattice distortion effect on elastic anisotropy of high entropy alloys</title><title>Journal of alloys and compounds</title><description>The superior mechanical properties of high-entropy alloys (HEAs) have made an outstanding success in materials science and engineering. Studies to date have been devoted to what the severe lattice distortion induces. However, most researchers focus on its stimulation to plastic deformation instead of scrutinizing the variations on elasticity. Compared with conventional alloys, HEAs may perform disproportionate elasticity with uneven local lattice strain resulting from the severe lattice distortion. Therefore, it is necessary to survey its influence on the mechanical properties of HEAs systematically. In this study, the Lennard-Jones (LJ) potential, the embedded atom method (EAM) potential, and the modified embedded atom method (MEAM), are respectively conducted to investigate the lattice distortion effect on Young’s modulus E (hkl) and Poisson’s ratio ν (hkl, θ) along [100], [110], and [111] loading directions for several fcc metals composed of 1 ∼ 5 atomic types, including Ni, Ni98W2, Ni96W4, FeCrNi, and CoNiCrFeMn HEAs. Also, a method is used to analyze the performance of the individual element on the elastic properties in the HEA environment. As a result, it can be unveiled that the effect of electron density inconsistency is more dominant than the effect of lattice distortion associated with the atomic size difference. The electronic configuration in the HEA environment plays a major role in elastic anisotropy while the difference of the atomic radii does the minor one. The anisotropy of CoNiCrFeMn HEA analyzed by this work is also consistent with in-situ neutron diffraction measurements. [Display omitted] •The elastic anisotropy for high-entropy alloys is investigated through molecular dynamics and statics.•The lattice distortion will enhance elastic anisotropy in dilute solid-solution alloys.•For high-entropy alloys, the electron density inconsistency is more dominant than the lattice distortion in elasticity.•A simple method is proposed to analyze the influence of individual element on Young’s modulus of high entropy alloys.</description><subject>Anisotropy</subject><subject>Atomic radius</subject><subject>Distortion</subject><subject>Elastic anisotropy</subject><subject>Elastic properties</subject><subject>Electron density</subject><subject>Embedded atom method</subject><subject>Embedded systems</subject><subject>High entropy alloys</subject><subject>Lattice distortion</subject><subject>Lattice strain</subject><subject>Materials science</subject><subject>Mechanical properties</subject><subject>Modulus of elasticity</subject><subject>Molecular dynamics</subject><subject>Neutron diffraction</subject><subject>Nickel</subject><subject>Plastic deformation</subject><subject>Poisson's ratio</subject><subject>Young’s modulus</subject><issn>0925-8388</issn><issn>1873-4669</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkEFLAzEQhYMoWKs_QVjwvGuS2c0mJ5FiVVjw0ntIs4nNst3UJBX6703Z3j3NDPPePOZD6JHgimDCnodqUOOo_b6imIiKNJS37AotCG-hrBkT12iBBW1KDpzforsYB4yzEsgCrTuVktOm6F1MPiTnp8JYa3Qqzt2oYt4WanLRp-APp8LbYue-d4WZ5jkn-1O8RzdWjdE8XOoSbdZvm9VH2X29f65eu1LXGFIJlAPdilpQrQ1RjGzrBpqetVYparGilDEusACmwLY1A0oFN7rNihq2DSzR03z2EPzP0cQkB38MU06UFJoaCAaMs6qZVTr4GIOx8hDcXoWTJFieiclBXojJMzE5E8u-l9ln8ge_zgQZtTOTNr0LGYjsvfvnwh_BHHYx</recordid><startdate>20200325</startdate><enddate>20200325</enddate><creator>Yen, Chao-Chun</creator><creator>Huang, Guan-Rong</creator><creator>Tan, Yun-Cheng</creator><creator>Yeh, Han-Wen</creator><creator>Luo, Da-Ji</creator><creator>Hsieh, Kang-Tien</creator><creator>Huang, E-Wen</creator><creator>Yeh, Jien-Wei</creator><creator>Lin, Su-Jien</creator><creator>Wang, Chun-Chieh</creator><creator>Kuo, Chin-Lung</creator><creator>Chang, Shou-Yi</creator><creator>Lo, Yu-Chieh</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0003-4986-0661</orcidid><orcidid>https://orcid.org/0000-0002-7117-9154</orcidid><orcidid>https://orcid.org/0000-0003-0595-4383</orcidid></search><sort><creationdate>20200325</creationdate><title>Lattice distortion effect on elastic anisotropy of high entropy alloys</title><author>Yen, Chao-Chun ; Huang, Guan-Rong ; Tan, Yun-Cheng ; Yeh, Han-Wen ; Luo, Da-Ji ; Hsieh, Kang-Tien ; Huang, E-Wen ; Yeh, Jien-Wei ; Lin, Su-Jien ; Wang, Chun-Chieh ; Kuo, Chin-Lung ; Chang, Shou-Yi ; Lo, Yu-Chieh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-32832b9492cce1a61b4535d67faa2f0a2266890936a3f74632298ec7d6743b53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Anisotropy</topic><topic>Atomic radius</topic><topic>Distortion</topic><topic>Elastic anisotropy</topic><topic>Elastic properties</topic><topic>Electron density</topic><topic>Embedded atom method</topic><topic>Embedded systems</topic><topic>High entropy alloys</topic><topic>Lattice distortion</topic><topic>Lattice strain</topic><topic>Materials science</topic><topic>Mechanical properties</topic><topic>Modulus of elasticity</topic><topic>Molecular dynamics</topic><topic>Neutron diffraction</topic><topic>Nickel</topic><topic>Plastic deformation</topic><topic>Poisson's ratio</topic><topic>Young’s modulus</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yen, Chao-Chun</creatorcontrib><creatorcontrib>Huang, Guan-Rong</creatorcontrib><creatorcontrib>Tan, Yun-Cheng</creatorcontrib><creatorcontrib>Yeh, Han-Wen</creatorcontrib><creatorcontrib>Luo, Da-Ji</creatorcontrib><creatorcontrib>Hsieh, Kang-Tien</creatorcontrib><creatorcontrib>Huang, E-Wen</creatorcontrib><creatorcontrib>Yeh, Jien-Wei</creatorcontrib><creatorcontrib>Lin, Su-Jien</creatorcontrib><creatorcontrib>Wang, Chun-Chieh</creatorcontrib><creatorcontrib>Kuo, Chin-Lung</creatorcontrib><creatorcontrib>Chang, Shou-Yi</creatorcontrib><creatorcontrib>Lo, Yu-Chieh</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of alloys and compounds</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yen, Chao-Chun</au><au>Huang, Guan-Rong</au><au>Tan, Yun-Cheng</au><au>Yeh, Han-Wen</au><au>Luo, Da-Ji</au><au>Hsieh, Kang-Tien</au><au>Huang, E-Wen</au><au>Yeh, Jien-Wei</au><au>Lin, Su-Jien</au><au>Wang, Chun-Chieh</au><au>Kuo, Chin-Lung</au><au>Chang, Shou-Yi</au><au>Lo, Yu-Chieh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lattice distortion effect on elastic anisotropy of high entropy alloys</atitle><jtitle>Journal of alloys and compounds</jtitle><date>2020-03-25</date><risdate>2020</risdate><volume>818</volume><spage>152876</spage><pages>152876-</pages><artnum>152876</artnum><issn>0925-8388</issn><eissn>1873-4669</eissn><abstract>The superior mechanical properties of high-entropy alloys (HEAs) have made an outstanding success in materials science and engineering. Studies to date have been devoted to what the severe lattice distortion induces. However, most researchers focus on its stimulation to plastic deformation instead of scrutinizing the variations on elasticity. Compared with conventional alloys, HEAs may perform disproportionate elasticity with uneven local lattice strain resulting from the severe lattice distortion. Therefore, it is necessary to survey its influence on the mechanical properties of HEAs systematically. In this study, the Lennard-Jones (LJ) potential, the embedded atom method (EAM) potential, and the modified embedded atom method (MEAM), are respectively conducted to investigate the lattice distortion effect on Young’s modulus E (hkl) and Poisson’s ratio ν (hkl, θ) along [100], [110], and [111] loading directions for several fcc metals composed of 1 ∼ 5 atomic types, including Ni, Ni98W2, Ni96W4, FeCrNi, and CoNiCrFeMn HEAs. Also, a method is used to analyze the performance of the individual element on the elastic properties in the HEA environment. As a result, it can be unveiled that the effect of electron density inconsistency is more dominant than the effect of lattice distortion associated with the atomic size difference. The electronic configuration in the HEA environment plays a major role in elastic anisotropy while the difference of the atomic radii does the minor one. The anisotropy of CoNiCrFeMn HEA analyzed by this work is also consistent with in-situ neutron diffraction measurements. [Display omitted] •The elastic anisotropy for high-entropy alloys is investigated through molecular dynamics and statics.•The lattice distortion will enhance elastic anisotropy in dilute solid-solution alloys.•For high-entropy alloys, the electron density inconsistency is more dominant than the lattice distortion in elasticity.•A simple method is proposed to analyze the influence of individual element on Young’s modulus of high entropy alloys.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jallcom.2019.152876</doi><orcidid>https://orcid.org/0000-0003-4986-0661</orcidid><orcidid>https://orcid.org/0000-0002-7117-9154</orcidid><orcidid>https://orcid.org/0000-0003-0595-4383</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0925-8388
ispartof Journal of alloys and compounds, 2020-03, Vol.818, p.152876, Article 152876
issn 0925-8388
1873-4669
language eng
recordid cdi_proquest_journals_2354310300
source Elsevier ScienceDirect Journals Complete
subjects Anisotropy
Atomic radius
Distortion
Elastic anisotropy
Elastic properties
Electron density
Embedded atom method
Embedded systems
High entropy alloys
Lattice distortion
Lattice strain
Materials science
Mechanical properties
Modulus of elasticity
Molecular dynamics
Neutron diffraction
Nickel
Plastic deformation
Poisson's ratio
Young’s modulus
title Lattice distortion effect on elastic anisotropy of high entropy alloys
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T08%3A57%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lattice%20distortion%20effect%20on%20elastic%20anisotropy%20of%20high%20entropy%20alloys&rft.jtitle=Journal%20of%20alloys%20and%20compounds&rft.au=Yen,%20Chao-Chun&rft.date=2020-03-25&rft.volume=818&rft.spage=152876&rft.pages=152876-&rft.artnum=152876&rft.issn=0925-8388&rft.eissn=1873-4669&rft_id=info:doi/10.1016/j.jallcom.2019.152876&rft_dat=%3Cproquest_cross%3E2354310300%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2354310300&rft_id=info:pmid/&rft_els_id=S0925838819341222&rfr_iscdi=true