Fabrication of exfoliated graphitic carbon nitride, (g-C3N4) thin film by methanolic dispersion
This paper reports the successful exfoliation of nanosheets from bulk g-C3N4 by using urea as a precursor. The alteration from bulk g-C3N4 powder, changed its semiconductor arrangements such as the optical absorption, chemical bonding, and topography images. A slow direct low thermal treatment (∼40 ...
Gespeichert in:
Veröffentlicht in: | Journal of alloys and compounds 2020-03, Vol.818, p.152916, Article 152916 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 152916 |
container_title | Journal of alloys and compounds |
container_volume | 818 |
creator | Mohamed, Nurul Aida Safaei, Javad Ismail, Aznan Fazli Mohamad Noh, Mohamad Firdaus Arzaee, Nurul Affiqah Mansor, Nurul Nasuha Ibrahim, Mohd Adib Ludin, Norasikin Ahmad Sagu, Jagdeep S. Mat Teridi, Mohd Asri |
description | This paper reports the successful exfoliation of nanosheets from bulk g-C3N4 by using urea as a precursor. The alteration from bulk g-C3N4 powder, changed its semiconductor arrangements such as the optical absorption, chemical bonding, and topography images. A slow direct low thermal treatment (∼40 °C, 24 h) was proposed as a formation of a thinner layer by layer, complete and effective polymerization for an exfoliated g-C3N4. The photocurrent responses were more than two times higher for exfoliated g-C3N4 compared with bulk g-C3N4, reaching ∼4.37 μA cm−2 up to 10.21 μA cm−2 at 1.23 vs. (Ag/AgCl). This fabrication method involved dispersing of the highly stable g-C3N4 suspension onto FTO surface via spin coating, followed by a moderate post-annealing temperature at 350 °C. The monolayer g-C3N4 act as a photoelectrode, responding to light and dark current, and maintained its own intrinsic n-types properties. The interaction of the C and N atom with molecules of methanol (CH3OH) followed with vibration force (ultrasonication) produces the ultrafast drying and can transmit to disrupt the van der Waals forces within the g-C3N4 structure. Therefore, due to the ability the good performance, the exfoliated g-C3N4 can be envisioned as a potential application such as water splitting, solar cell, and environmental remediation.
•The introduction of low direct thermal treatment (40°) for bulk g-C3N4 and Urea as a precursor.•Methanol was chosen due to the excellent dispersion method in the fabrication of a uniform thin film.•The modification via ultrasonication (vibration force) reinforced the Wan der Waals forces inside the exfoliated g-C3N4.•FT-IR signal exhibited a broad/strong crystalline peak, representing an enhanced chemical bond network in exfoliated g-C3N4.•The exfoliated g-C3N4 thin-film yielded the optimum photocurrent density reaching 10.21 μA cm−2 at 1.23 V versus Ag/AgCl. |
doi_str_mv | 10.1016/j.jallcom.2019.152916 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2354309549</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925838819341623</els_id><sourcerecordid>2354309549</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-9cd773b1231f976f88a006576bdc5aecd189d13275b697874f95f774e945ff753</originalsourceid><addsrcrecordid>eNqFkE1LAzEURYMoWKs_QQi4UXDGZDKZJCuRYlUoutF1yOSjzTBfJqnYf--Udu_qLd499_EOANcY5Rjh6qHJG9W2eujyAmGRY1oIXJ2AGeaMZGVViVMwQ6KgGSecn4OLGBuEpiTBMyCXqg5eq-SHHg4O2l83tF4la-A6qHHjk9dQq1BP696n4I29h7frbEHeyzuYNr6HzrcdrHews2mj-onW0Pg42hCnzktw5lQb7dVxzsHX8vlz8ZqtPl7eFk-rTBPCUia0YYzUuCDYCVY5zhVCFWVVbTRVVhvMhcGkYLSuBOOsdII6xkorSuoco2QObg69Yxi-tzYm2Qzb0E8nZUFoSZCgpZhS9JDSYYgxWCfH4DsVdhIjuXcpG3l0Kfcu5cHlxD0eODu98ONtkFF722trfLA6STP4fxr-ANA2fsY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2354309549</pqid></control><display><type>article</type><title>Fabrication of exfoliated graphitic carbon nitride, (g-C3N4) thin film by methanolic dispersion</title><source>Access via ScienceDirect (Elsevier)</source><creator>Mohamed, Nurul Aida ; Safaei, Javad ; Ismail, Aznan Fazli ; Mohamad Noh, Mohamad Firdaus ; Arzaee, Nurul Affiqah ; Mansor, Nurul Nasuha ; Ibrahim, Mohd Adib ; Ludin, Norasikin Ahmad ; Sagu, Jagdeep S. ; Mat Teridi, Mohd Asri</creator><creatorcontrib>Mohamed, Nurul Aida ; Safaei, Javad ; Ismail, Aznan Fazli ; Mohamad Noh, Mohamad Firdaus ; Arzaee, Nurul Affiqah ; Mansor, Nurul Nasuha ; Ibrahim, Mohd Adib ; Ludin, Norasikin Ahmad ; Sagu, Jagdeep S. ; Mat Teridi, Mohd Asri</creatorcontrib><description>This paper reports the successful exfoliation of nanosheets from bulk g-C3N4 by using urea as a precursor. The alteration from bulk g-C3N4 powder, changed its semiconductor arrangements such as the optical absorption, chemical bonding, and topography images. A slow direct low thermal treatment (∼40 °C, 24 h) was proposed as a formation of a thinner layer by layer, complete and effective polymerization for an exfoliated g-C3N4. The photocurrent responses were more than two times higher for exfoliated g-C3N4 compared with bulk g-C3N4, reaching ∼4.37 μA cm−2 up to 10.21 μA cm−2 at 1.23 vs. (Ag/AgCl). This fabrication method involved dispersing of the highly stable g-C3N4 suspension onto FTO surface via spin coating, followed by a moderate post-annealing temperature at 350 °C. The monolayer g-C3N4 act as a photoelectrode, responding to light and dark current, and maintained its own intrinsic n-types properties. The interaction of the C and N atom with molecules of methanol (CH3OH) followed with vibration force (ultrasonication) produces the ultrafast drying and can transmit to disrupt the van der Waals forces within the g-C3N4 structure. Therefore, due to the ability the good performance, the exfoliated g-C3N4 can be envisioned as a potential application such as water splitting, solar cell, and environmental remediation.
•The introduction of low direct thermal treatment (40°) for bulk g-C3N4 and Urea as a precursor.•Methanol was chosen due to the excellent dispersion method in the fabrication of a uniform thin film.•The modification via ultrasonication (vibration force) reinforced the Wan der Waals forces inside the exfoliated g-C3N4.•FT-IR signal exhibited a broad/strong crystalline peak, representing an enhanced chemical bond network in exfoliated g-C3N4.•The exfoliated g-C3N4 thin-film yielded the optimum photocurrent density reaching 10.21 μA cm−2 at 1.23 V versus Ag/AgCl.</description><identifier>ISSN: 0925-8388</identifier><identifier>EISSN: 1873-4669</identifier><identifier>DOI: 10.1016/j.jallcom.2019.152916</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Carbon nitride ; Chemical bonds ; Dark current ; Dispersion ; Dispersion method ; Exfoliate g-C3N4 ; Exfoliation ; Heat treatment ; Low thermal treatment ; Organic chemistry ; Photoelectric effect ; Photoelectric emission ; Photovoltaic cells ; Silver chloride ; Solar cells ; Spin coating ; Thin films ; Ultrasonication ; Van der Waals forces ; Water splitting</subject><ispartof>Journal of alloys and compounds, 2020-03, Vol.818, p.152916, Article 152916</ispartof><rights>2019 Elsevier B.V.</rights><rights>Copyright Elsevier BV Mar 25, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-9cd773b1231f976f88a006576bdc5aecd189d13275b697874f95f774e945ff753</citedby><cites>FETCH-LOGICAL-c337t-9cd773b1231f976f88a006576bdc5aecd189d13275b697874f95f774e945ff753</cites><orcidid>0000-0002-4563-3245 ; 0000-0003-3397-5026 ; 0000-0001-5675-1733</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jallcom.2019.152916$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Mohamed, Nurul Aida</creatorcontrib><creatorcontrib>Safaei, Javad</creatorcontrib><creatorcontrib>Ismail, Aznan Fazli</creatorcontrib><creatorcontrib>Mohamad Noh, Mohamad Firdaus</creatorcontrib><creatorcontrib>Arzaee, Nurul Affiqah</creatorcontrib><creatorcontrib>Mansor, Nurul Nasuha</creatorcontrib><creatorcontrib>Ibrahim, Mohd Adib</creatorcontrib><creatorcontrib>Ludin, Norasikin Ahmad</creatorcontrib><creatorcontrib>Sagu, Jagdeep S.</creatorcontrib><creatorcontrib>Mat Teridi, Mohd Asri</creatorcontrib><title>Fabrication of exfoliated graphitic carbon nitride, (g-C3N4) thin film by methanolic dispersion</title><title>Journal of alloys and compounds</title><description>This paper reports the successful exfoliation of nanosheets from bulk g-C3N4 by using urea as a precursor. The alteration from bulk g-C3N4 powder, changed its semiconductor arrangements such as the optical absorption, chemical bonding, and topography images. A slow direct low thermal treatment (∼40 °C, 24 h) was proposed as a formation of a thinner layer by layer, complete and effective polymerization for an exfoliated g-C3N4. The photocurrent responses were more than two times higher for exfoliated g-C3N4 compared with bulk g-C3N4, reaching ∼4.37 μA cm−2 up to 10.21 μA cm−2 at 1.23 vs. (Ag/AgCl). This fabrication method involved dispersing of the highly stable g-C3N4 suspension onto FTO surface via spin coating, followed by a moderate post-annealing temperature at 350 °C. The monolayer g-C3N4 act as a photoelectrode, responding to light and dark current, and maintained its own intrinsic n-types properties. The interaction of the C and N atom with molecules of methanol (CH3OH) followed with vibration force (ultrasonication) produces the ultrafast drying and can transmit to disrupt the van der Waals forces within the g-C3N4 structure. Therefore, due to the ability the good performance, the exfoliated g-C3N4 can be envisioned as a potential application such as water splitting, solar cell, and environmental remediation.
•The introduction of low direct thermal treatment (40°) for bulk g-C3N4 and Urea as a precursor.•Methanol was chosen due to the excellent dispersion method in the fabrication of a uniform thin film.•The modification via ultrasonication (vibration force) reinforced the Wan der Waals forces inside the exfoliated g-C3N4.•FT-IR signal exhibited a broad/strong crystalline peak, representing an enhanced chemical bond network in exfoliated g-C3N4.•The exfoliated g-C3N4 thin-film yielded the optimum photocurrent density reaching 10.21 μA cm−2 at 1.23 V versus Ag/AgCl.</description><subject>Carbon nitride</subject><subject>Chemical bonds</subject><subject>Dark current</subject><subject>Dispersion</subject><subject>Dispersion method</subject><subject>Exfoliate g-C3N4</subject><subject>Exfoliation</subject><subject>Heat treatment</subject><subject>Low thermal treatment</subject><subject>Organic chemistry</subject><subject>Photoelectric effect</subject><subject>Photoelectric emission</subject><subject>Photovoltaic cells</subject><subject>Silver chloride</subject><subject>Solar cells</subject><subject>Spin coating</subject><subject>Thin films</subject><subject>Ultrasonication</subject><subject>Van der Waals forces</subject><subject>Water splitting</subject><issn>0925-8388</issn><issn>1873-4669</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEURYMoWKs_QQi4UXDGZDKZJCuRYlUoutF1yOSjzTBfJqnYf--Udu_qLd499_EOANcY5Rjh6qHJG9W2eujyAmGRY1oIXJ2AGeaMZGVViVMwQ6KgGSecn4OLGBuEpiTBMyCXqg5eq-SHHg4O2l83tF4la-A6qHHjk9dQq1BP696n4I29h7frbEHeyzuYNr6HzrcdrHews2mj-onW0Pg42hCnzktw5lQb7dVxzsHX8vlz8ZqtPl7eFk-rTBPCUia0YYzUuCDYCVY5zhVCFWVVbTRVVhvMhcGkYLSuBOOsdII6xkorSuoco2QObg69Yxi-tzYm2Qzb0E8nZUFoSZCgpZhS9JDSYYgxWCfH4DsVdhIjuXcpG3l0Kfcu5cHlxD0eODu98ONtkFF722trfLA6STP4fxr-ANA2fsY</recordid><startdate>20200325</startdate><enddate>20200325</enddate><creator>Mohamed, Nurul Aida</creator><creator>Safaei, Javad</creator><creator>Ismail, Aznan Fazli</creator><creator>Mohamad Noh, Mohamad Firdaus</creator><creator>Arzaee, Nurul Affiqah</creator><creator>Mansor, Nurul Nasuha</creator><creator>Ibrahim, Mohd Adib</creator><creator>Ludin, Norasikin Ahmad</creator><creator>Sagu, Jagdeep S.</creator><creator>Mat Teridi, Mohd Asri</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-4563-3245</orcidid><orcidid>https://orcid.org/0000-0003-3397-5026</orcidid><orcidid>https://orcid.org/0000-0001-5675-1733</orcidid></search><sort><creationdate>20200325</creationdate><title>Fabrication of exfoliated graphitic carbon nitride, (g-C3N4) thin film by methanolic dispersion</title><author>Mohamed, Nurul Aida ; Safaei, Javad ; Ismail, Aznan Fazli ; Mohamad Noh, Mohamad Firdaus ; Arzaee, Nurul Affiqah ; Mansor, Nurul Nasuha ; Ibrahim, Mohd Adib ; Ludin, Norasikin Ahmad ; Sagu, Jagdeep S. ; Mat Teridi, Mohd Asri</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-9cd773b1231f976f88a006576bdc5aecd189d13275b697874f95f774e945ff753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Carbon nitride</topic><topic>Chemical bonds</topic><topic>Dark current</topic><topic>Dispersion</topic><topic>Dispersion method</topic><topic>Exfoliate g-C3N4</topic><topic>Exfoliation</topic><topic>Heat treatment</topic><topic>Low thermal treatment</topic><topic>Organic chemistry</topic><topic>Photoelectric effect</topic><topic>Photoelectric emission</topic><topic>Photovoltaic cells</topic><topic>Silver chloride</topic><topic>Solar cells</topic><topic>Spin coating</topic><topic>Thin films</topic><topic>Ultrasonication</topic><topic>Van der Waals forces</topic><topic>Water splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mohamed, Nurul Aida</creatorcontrib><creatorcontrib>Safaei, Javad</creatorcontrib><creatorcontrib>Ismail, Aznan Fazli</creatorcontrib><creatorcontrib>Mohamad Noh, Mohamad Firdaus</creatorcontrib><creatorcontrib>Arzaee, Nurul Affiqah</creatorcontrib><creatorcontrib>Mansor, Nurul Nasuha</creatorcontrib><creatorcontrib>Ibrahim, Mohd Adib</creatorcontrib><creatorcontrib>Ludin, Norasikin Ahmad</creatorcontrib><creatorcontrib>Sagu, Jagdeep S.</creatorcontrib><creatorcontrib>Mat Teridi, Mohd Asri</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of alloys and compounds</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mohamed, Nurul Aida</au><au>Safaei, Javad</au><au>Ismail, Aznan Fazli</au><au>Mohamad Noh, Mohamad Firdaus</au><au>Arzaee, Nurul Affiqah</au><au>Mansor, Nurul Nasuha</au><au>Ibrahim, Mohd Adib</au><au>Ludin, Norasikin Ahmad</au><au>Sagu, Jagdeep S.</au><au>Mat Teridi, Mohd Asri</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fabrication of exfoliated graphitic carbon nitride, (g-C3N4) thin film by methanolic dispersion</atitle><jtitle>Journal of alloys and compounds</jtitle><date>2020-03-25</date><risdate>2020</risdate><volume>818</volume><spage>152916</spage><pages>152916-</pages><artnum>152916</artnum><issn>0925-8388</issn><eissn>1873-4669</eissn><abstract>This paper reports the successful exfoliation of nanosheets from bulk g-C3N4 by using urea as a precursor. The alteration from bulk g-C3N4 powder, changed its semiconductor arrangements such as the optical absorption, chemical bonding, and topography images. A slow direct low thermal treatment (∼40 °C, 24 h) was proposed as a formation of a thinner layer by layer, complete and effective polymerization for an exfoliated g-C3N4. The photocurrent responses were more than two times higher for exfoliated g-C3N4 compared with bulk g-C3N4, reaching ∼4.37 μA cm−2 up to 10.21 μA cm−2 at 1.23 vs. (Ag/AgCl). This fabrication method involved dispersing of the highly stable g-C3N4 suspension onto FTO surface via spin coating, followed by a moderate post-annealing temperature at 350 °C. The monolayer g-C3N4 act as a photoelectrode, responding to light and dark current, and maintained its own intrinsic n-types properties. The interaction of the C and N atom with molecules of methanol (CH3OH) followed with vibration force (ultrasonication) produces the ultrafast drying and can transmit to disrupt the van der Waals forces within the g-C3N4 structure. Therefore, due to the ability the good performance, the exfoliated g-C3N4 can be envisioned as a potential application such as water splitting, solar cell, and environmental remediation.
•The introduction of low direct thermal treatment (40°) for bulk g-C3N4 and Urea as a precursor.•Methanol was chosen due to the excellent dispersion method in the fabrication of a uniform thin film.•The modification via ultrasonication (vibration force) reinforced the Wan der Waals forces inside the exfoliated g-C3N4.•FT-IR signal exhibited a broad/strong crystalline peak, representing an enhanced chemical bond network in exfoliated g-C3N4.•The exfoliated g-C3N4 thin-film yielded the optimum photocurrent density reaching 10.21 μA cm−2 at 1.23 V versus Ag/AgCl.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jallcom.2019.152916</doi><orcidid>https://orcid.org/0000-0002-4563-3245</orcidid><orcidid>https://orcid.org/0000-0003-3397-5026</orcidid><orcidid>https://orcid.org/0000-0001-5675-1733</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0925-8388 |
ispartof | Journal of alloys and compounds, 2020-03, Vol.818, p.152916, Article 152916 |
issn | 0925-8388 1873-4669 |
language | eng |
recordid | cdi_proquest_journals_2354309549 |
source | Access via ScienceDirect (Elsevier) |
subjects | Carbon nitride Chemical bonds Dark current Dispersion Dispersion method Exfoliate g-C3N4 Exfoliation Heat treatment Low thermal treatment Organic chemistry Photoelectric effect Photoelectric emission Photovoltaic cells Silver chloride Solar cells Spin coating Thin films Ultrasonication Van der Waals forces Water splitting |
title | Fabrication of exfoliated graphitic carbon nitride, (g-C3N4) thin film by methanolic dispersion |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T08%3A20%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fabrication%20of%20exfoliated%20graphitic%20carbon%20nitride,%20(g-C3N4)%20thin%20film%20by%20methanolic%20dispersion&rft.jtitle=Journal%20of%20alloys%20and%20compounds&rft.au=Mohamed,%20Nurul%20Aida&rft.date=2020-03-25&rft.volume=818&rft.spage=152916&rft.pages=152916-&rft.artnum=152916&rft.issn=0925-8388&rft.eissn=1873-4669&rft_id=info:doi/10.1016/j.jallcom.2019.152916&rft_dat=%3Cproquest_cross%3E2354309549%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2354309549&rft_id=info:pmid/&rft_els_id=S0925838819341623&rfr_iscdi=true |