Fabrication of exfoliated graphitic carbon nitride, (g-C3N4) thin film by methanolic dispersion

This paper reports the successful exfoliation of nanosheets from bulk g-C3N4 by using urea as a precursor. The alteration from bulk g-C3N4 powder, changed its semiconductor arrangements such as the optical absorption, chemical bonding, and topography images. A slow direct low thermal treatment (∼40 ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of alloys and compounds 2020-03, Vol.818, p.152916, Article 152916
Hauptverfasser: Mohamed, Nurul Aida, Safaei, Javad, Ismail, Aznan Fazli, Mohamad Noh, Mohamad Firdaus, Arzaee, Nurul Affiqah, Mansor, Nurul Nasuha, Ibrahim, Mohd Adib, Ludin, Norasikin Ahmad, Sagu, Jagdeep S., Mat Teridi, Mohd Asri
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 152916
container_title Journal of alloys and compounds
container_volume 818
creator Mohamed, Nurul Aida
Safaei, Javad
Ismail, Aznan Fazli
Mohamad Noh, Mohamad Firdaus
Arzaee, Nurul Affiqah
Mansor, Nurul Nasuha
Ibrahim, Mohd Adib
Ludin, Norasikin Ahmad
Sagu, Jagdeep S.
Mat Teridi, Mohd Asri
description This paper reports the successful exfoliation of nanosheets from bulk g-C3N4 by using urea as a precursor. The alteration from bulk g-C3N4 powder, changed its semiconductor arrangements such as the optical absorption, chemical bonding, and topography images. A slow direct low thermal treatment (∼40 °C, 24 h) was proposed as a formation of a thinner layer by layer, complete and effective polymerization for an exfoliated g-C3N4. The photocurrent responses were more than two times higher for exfoliated g-C3N4 compared with bulk g-C3N4, reaching ∼4.37 μA cm−2 up to 10.21 μA cm−2 at 1.23 vs. (Ag/AgCl). This fabrication method involved dispersing of the highly stable g-C3N4 suspension onto FTO surface via spin coating, followed by a moderate post-annealing temperature at 350 °C. The monolayer g-C3N4 act as a photoelectrode, responding to light and dark current, and maintained its own intrinsic n-types properties. The interaction of the C and N atom with molecules of methanol (CH3OH) followed with vibration force (ultrasonication) produces the ultrafast drying and can transmit to disrupt the van der Waals forces within the g-C3N4 structure. Therefore, due to the ability the good performance, the exfoliated g-C3N4 can be envisioned as a potential application such as water splitting, solar cell, and environmental remediation. •The introduction of low direct thermal treatment (40°) for bulk g-C3N4 and Urea as a precursor.•Methanol was chosen due to the excellent dispersion method in the fabrication of a uniform thin film.•The modification via ultrasonication (vibration force) reinforced the Wan der Waals forces inside the exfoliated g-C3N4.•FT-IR signal exhibited a broad/strong crystalline peak, representing an enhanced chemical bond network in exfoliated g-C3N4.•The exfoliated g-C3N4 thin-film yielded the optimum photocurrent density reaching 10.21 μA cm−2 at 1.23 V versus Ag/AgCl.
doi_str_mv 10.1016/j.jallcom.2019.152916
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2354309549</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925838819341623</els_id><sourcerecordid>2354309549</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-9cd773b1231f976f88a006576bdc5aecd189d13275b697874f95f774e945ff753</originalsourceid><addsrcrecordid>eNqFkE1LAzEURYMoWKs_QQi4UXDGZDKZJCuRYlUoutF1yOSjzTBfJqnYf--Udu_qLd499_EOANcY5Rjh6qHJG9W2eujyAmGRY1oIXJ2AGeaMZGVViVMwQ6KgGSecn4OLGBuEpiTBMyCXqg5eq-SHHg4O2l83tF4la-A6qHHjk9dQq1BP696n4I29h7frbEHeyzuYNr6HzrcdrHews2mj-onW0Pg42hCnzktw5lQb7dVxzsHX8vlz8ZqtPl7eFk-rTBPCUia0YYzUuCDYCVY5zhVCFWVVbTRVVhvMhcGkYLSuBOOsdII6xkorSuoco2QObg69Yxi-tzYm2Qzb0E8nZUFoSZCgpZhS9JDSYYgxWCfH4DsVdhIjuXcpG3l0Kfcu5cHlxD0eODu98ONtkFF722trfLA6STP4fxr-ANA2fsY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2354309549</pqid></control><display><type>article</type><title>Fabrication of exfoliated graphitic carbon nitride, (g-C3N4) thin film by methanolic dispersion</title><source>Access via ScienceDirect (Elsevier)</source><creator>Mohamed, Nurul Aida ; Safaei, Javad ; Ismail, Aznan Fazli ; Mohamad Noh, Mohamad Firdaus ; Arzaee, Nurul Affiqah ; Mansor, Nurul Nasuha ; Ibrahim, Mohd Adib ; Ludin, Norasikin Ahmad ; Sagu, Jagdeep S. ; Mat Teridi, Mohd Asri</creator><creatorcontrib>Mohamed, Nurul Aida ; Safaei, Javad ; Ismail, Aznan Fazli ; Mohamad Noh, Mohamad Firdaus ; Arzaee, Nurul Affiqah ; Mansor, Nurul Nasuha ; Ibrahim, Mohd Adib ; Ludin, Norasikin Ahmad ; Sagu, Jagdeep S. ; Mat Teridi, Mohd Asri</creatorcontrib><description>This paper reports the successful exfoliation of nanosheets from bulk g-C3N4 by using urea as a precursor. The alteration from bulk g-C3N4 powder, changed its semiconductor arrangements such as the optical absorption, chemical bonding, and topography images. A slow direct low thermal treatment (∼40 °C, 24 h) was proposed as a formation of a thinner layer by layer, complete and effective polymerization for an exfoliated g-C3N4. The photocurrent responses were more than two times higher for exfoliated g-C3N4 compared with bulk g-C3N4, reaching ∼4.37 μA cm−2 up to 10.21 μA cm−2 at 1.23 vs. (Ag/AgCl). This fabrication method involved dispersing of the highly stable g-C3N4 suspension onto FTO surface via spin coating, followed by a moderate post-annealing temperature at 350 °C. The monolayer g-C3N4 act as a photoelectrode, responding to light and dark current, and maintained its own intrinsic n-types properties. The interaction of the C and N atom with molecules of methanol (CH3OH) followed with vibration force (ultrasonication) produces the ultrafast drying and can transmit to disrupt the van der Waals forces within the g-C3N4 structure. Therefore, due to the ability the good performance, the exfoliated g-C3N4 can be envisioned as a potential application such as water splitting, solar cell, and environmental remediation. •The introduction of low direct thermal treatment (40°) for bulk g-C3N4 and Urea as a precursor.•Methanol was chosen due to the excellent dispersion method in the fabrication of a uniform thin film.•The modification via ultrasonication (vibration force) reinforced the Wan der Waals forces inside the exfoliated g-C3N4.•FT-IR signal exhibited a broad/strong crystalline peak, representing an enhanced chemical bond network in exfoliated g-C3N4.•The exfoliated g-C3N4 thin-film yielded the optimum photocurrent density reaching 10.21 μA cm−2 at 1.23 V versus Ag/AgCl.</description><identifier>ISSN: 0925-8388</identifier><identifier>EISSN: 1873-4669</identifier><identifier>DOI: 10.1016/j.jallcom.2019.152916</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Carbon nitride ; Chemical bonds ; Dark current ; Dispersion ; Dispersion method ; Exfoliate g-C3N4 ; Exfoliation ; Heat treatment ; Low thermal treatment ; Organic chemistry ; Photoelectric effect ; Photoelectric emission ; Photovoltaic cells ; Silver chloride ; Solar cells ; Spin coating ; Thin films ; Ultrasonication ; Van der Waals forces ; Water splitting</subject><ispartof>Journal of alloys and compounds, 2020-03, Vol.818, p.152916, Article 152916</ispartof><rights>2019 Elsevier B.V.</rights><rights>Copyright Elsevier BV Mar 25, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-9cd773b1231f976f88a006576bdc5aecd189d13275b697874f95f774e945ff753</citedby><cites>FETCH-LOGICAL-c337t-9cd773b1231f976f88a006576bdc5aecd189d13275b697874f95f774e945ff753</cites><orcidid>0000-0002-4563-3245 ; 0000-0003-3397-5026 ; 0000-0001-5675-1733</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jallcom.2019.152916$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Mohamed, Nurul Aida</creatorcontrib><creatorcontrib>Safaei, Javad</creatorcontrib><creatorcontrib>Ismail, Aznan Fazli</creatorcontrib><creatorcontrib>Mohamad Noh, Mohamad Firdaus</creatorcontrib><creatorcontrib>Arzaee, Nurul Affiqah</creatorcontrib><creatorcontrib>Mansor, Nurul Nasuha</creatorcontrib><creatorcontrib>Ibrahim, Mohd Adib</creatorcontrib><creatorcontrib>Ludin, Norasikin Ahmad</creatorcontrib><creatorcontrib>Sagu, Jagdeep S.</creatorcontrib><creatorcontrib>Mat Teridi, Mohd Asri</creatorcontrib><title>Fabrication of exfoliated graphitic carbon nitride, (g-C3N4) thin film by methanolic dispersion</title><title>Journal of alloys and compounds</title><description>This paper reports the successful exfoliation of nanosheets from bulk g-C3N4 by using urea as a precursor. The alteration from bulk g-C3N4 powder, changed its semiconductor arrangements such as the optical absorption, chemical bonding, and topography images. A slow direct low thermal treatment (∼40 °C, 24 h) was proposed as a formation of a thinner layer by layer, complete and effective polymerization for an exfoliated g-C3N4. The photocurrent responses were more than two times higher for exfoliated g-C3N4 compared with bulk g-C3N4, reaching ∼4.37 μA cm−2 up to 10.21 μA cm−2 at 1.23 vs. (Ag/AgCl). This fabrication method involved dispersing of the highly stable g-C3N4 suspension onto FTO surface via spin coating, followed by a moderate post-annealing temperature at 350 °C. The monolayer g-C3N4 act as a photoelectrode, responding to light and dark current, and maintained its own intrinsic n-types properties. The interaction of the C and N atom with molecules of methanol (CH3OH) followed with vibration force (ultrasonication) produces the ultrafast drying and can transmit to disrupt the van der Waals forces within the g-C3N4 structure. Therefore, due to the ability the good performance, the exfoliated g-C3N4 can be envisioned as a potential application such as water splitting, solar cell, and environmental remediation. •The introduction of low direct thermal treatment (40°) for bulk g-C3N4 and Urea as a precursor.•Methanol was chosen due to the excellent dispersion method in the fabrication of a uniform thin film.•The modification via ultrasonication (vibration force) reinforced the Wan der Waals forces inside the exfoliated g-C3N4.•FT-IR signal exhibited a broad/strong crystalline peak, representing an enhanced chemical bond network in exfoliated g-C3N4.•The exfoliated g-C3N4 thin-film yielded the optimum photocurrent density reaching 10.21 μA cm−2 at 1.23 V versus Ag/AgCl.</description><subject>Carbon nitride</subject><subject>Chemical bonds</subject><subject>Dark current</subject><subject>Dispersion</subject><subject>Dispersion method</subject><subject>Exfoliate g-C3N4</subject><subject>Exfoliation</subject><subject>Heat treatment</subject><subject>Low thermal treatment</subject><subject>Organic chemistry</subject><subject>Photoelectric effect</subject><subject>Photoelectric emission</subject><subject>Photovoltaic cells</subject><subject>Silver chloride</subject><subject>Solar cells</subject><subject>Spin coating</subject><subject>Thin films</subject><subject>Ultrasonication</subject><subject>Van der Waals forces</subject><subject>Water splitting</subject><issn>0925-8388</issn><issn>1873-4669</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEURYMoWKs_QQi4UXDGZDKZJCuRYlUoutF1yOSjzTBfJqnYf--Udu_qLd499_EOANcY5Rjh6qHJG9W2eujyAmGRY1oIXJ2AGeaMZGVViVMwQ6KgGSecn4OLGBuEpiTBMyCXqg5eq-SHHg4O2l83tF4la-A6qHHjk9dQq1BP696n4I29h7frbEHeyzuYNr6HzrcdrHews2mj-onW0Pg42hCnzktw5lQb7dVxzsHX8vlz8ZqtPl7eFk-rTBPCUia0YYzUuCDYCVY5zhVCFWVVbTRVVhvMhcGkYLSuBOOsdII6xkorSuoco2QObg69Yxi-tzYm2Qzb0E8nZUFoSZCgpZhS9JDSYYgxWCfH4DsVdhIjuXcpG3l0Kfcu5cHlxD0eODu98ONtkFF722trfLA6STP4fxr-ANA2fsY</recordid><startdate>20200325</startdate><enddate>20200325</enddate><creator>Mohamed, Nurul Aida</creator><creator>Safaei, Javad</creator><creator>Ismail, Aznan Fazli</creator><creator>Mohamad Noh, Mohamad Firdaus</creator><creator>Arzaee, Nurul Affiqah</creator><creator>Mansor, Nurul Nasuha</creator><creator>Ibrahim, Mohd Adib</creator><creator>Ludin, Norasikin Ahmad</creator><creator>Sagu, Jagdeep S.</creator><creator>Mat Teridi, Mohd Asri</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-4563-3245</orcidid><orcidid>https://orcid.org/0000-0003-3397-5026</orcidid><orcidid>https://orcid.org/0000-0001-5675-1733</orcidid></search><sort><creationdate>20200325</creationdate><title>Fabrication of exfoliated graphitic carbon nitride, (g-C3N4) thin film by methanolic dispersion</title><author>Mohamed, Nurul Aida ; Safaei, Javad ; Ismail, Aznan Fazli ; Mohamad Noh, Mohamad Firdaus ; Arzaee, Nurul Affiqah ; Mansor, Nurul Nasuha ; Ibrahim, Mohd Adib ; Ludin, Norasikin Ahmad ; Sagu, Jagdeep S. ; Mat Teridi, Mohd Asri</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-9cd773b1231f976f88a006576bdc5aecd189d13275b697874f95f774e945ff753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Carbon nitride</topic><topic>Chemical bonds</topic><topic>Dark current</topic><topic>Dispersion</topic><topic>Dispersion method</topic><topic>Exfoliate g-C3N4</topic><topic>Exfoliation</topic><topic>Heat treatment</topic><topic>Low thermal treatment</topic><topic>Organic chemistry</topic><topic>Photoelectric effect</topic><topic>Photoelectric emission</topic><topic>Photovoltaic cells</topic><topic>Silver chloride</topic><topic>Solar cells</topic><topic>Spin coating</topic><topic>Thin films</topic><topic>Ultrasonication</topic><topic>Van der Waals forces</topic><topic>Water splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mohamed, Nurul Aida</creatorcontrib><creatorcontrib>Safaei, Javad</creatorcontrib><creatorcontrib>Ismail, Aznan Fazli</creatorcontrib><creatorcontrib>Mohamad Noh, Mohamad Firdaus</creatorcontrib><creatorcontrib>Arzaee, Nurul Affiqah</creatorcontrib><creatorcontrib>Mansor, Nurul Nasuha</creatorcontrib><creatorcontrib>Ibrahim, Mohd Adib</creatorcontrib><creatorcontrib>Ludin, Norasikin Ahmad</creatorcontrib><creatorcontrib>Sagu, Jagdeep S.</creatorcontrib><creatorcontrib>Mat Teridi, Mohd Asri</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of alloys and compounds</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mohamed, Nurul Aida</au><au>Safaei, Javad</au><au>Ismail, Aznan Fazli</au><au>Mohamad Noh, Mohamad Firdaus</au><au>Arzaee, Nurul Affiqah</au><au>Mansor, Nurul Nasuha</au><au>Ibrahim, Mohd Adib</au><au>Ludin, Norasikin Ahmad</au><au>Sagu, Jagdeep S.</au><au>Mat Teridi, Mohd Asri</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fabrication of exfoliated graphitic carbon nitride, (g-C3N4) thin film by methanolic dispersion</atitle><jtitle>Journal of alloys and compounds</jtitle><date>2020-03-25</date><risdate>2020</risdate><volume>818</volume><spage>152916</spage><pages>152916-</pages><artnum>152916</artnum><issn>0925-8388</issn><eissn>1873-4669</eissn><abstract>This paper reports the successful exfoliation of nanosheets from bulk g-C3N4 by using urea as a precursor. The alteration from bulk g-C3N4 powder, changed its semiconductor arrangements such as the optical absorption, chemical bonding, and topography images. A slow direct low thermal treatment (∼40 °C, 24 h) was proposed as a formation of a thinner layer by layer, complete and effective polymerization for an exfoliated g-C3N4. The photocurrent responses were more than two times higher for exfoliated g-C3N4 compared with bulk g-C3N4, reaching ∼4.37 μA cm−2 up to 10.21 μA cm−2 at 1.23 vs. (Ag/AgCl). This fabrication method involved dispersing of the highly stable g-C3N4 suspension onto FTO surface via spin coating, followed by a moderate post-annealing temperature at 350 °C. The monolayer g-C3N4 act as a photoelectrode, responding to light and dark current, and maintained its own intrinsic n-types properties. The interaction of the C and N atom with molecules of methanol (CH3OH) followed with vibration force (ultrasonication) produces the ultrafast drying and can transmit to disrupt the van der Waals forces within the g-C3N4 structure. Therefore, due to the ability the good performance, the exfoliated g-C3N4 can be envisioned as a potential application such as water splitting, solar cell, and environmental remediation. •The introduction of low direct thermal treatment (40°) for bulk g-C3N4 and Urea as a precursor.•Methanol was chosen due to the excellent dispersion method in the fabrication of a uniform thin film.•The modification via ultrasonication (vibration force) reinforced the Wan der Waals forces inside the exfoliated g-C3N4.•FT-IR signal exhibited a broad/strong crystalline peak, representing an enhanced chemical bond network in exfoliated g-C3N4.•The exfoliated g-C3N4 thin-film yielded the optimum photocurrent density reaching 10.21 μA cm−2 at 1.23 V versus Ag/AgCl.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jallcom.2019.152916</doi><orcidid>https://orcid.org/0000-0002-4563-3245</orcidid><orcidid>https://orcid.org/0000-0003-3397-5026</orcidid><orcidid>https://orcid.org/0000-0001-5675-1733</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0925-8388
ispartof Journal of alloys and compounds, 2020-03, Vol.818, p.152916, Article 152916
issn 0925-8388
1873-4669
language eng
recordid cdi_proquest_journals_2354309549
source Access via ScienceDirect (Elsevier)
subjects Carbon nitride
Chemical bonds
Dark current
Dispersion
Dispersion method
Exfoliate g-C3N4
Exfoliation
Heat treatment
Low thermal treatment
Organic chemistry
Photoelectric effect
Photoelectric emission
Photovoltaic cells
Silver chloride
Solar cells
Spin coating
Thin films
Ultrasonication
Van der Waals forces
Water splitting
title Fabrication of exfoliated graphitic carbon nitride, (g-C3N4) thin film by methanolic dispersion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T08%3A20%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fabrication%20of%20exfoliated%20graphitic%20carbon%20nitride,%20(g-C3N4)%20thin%20film%20by%20methanolic%20dispersion&rft.jtitle=Journal%20of%20alloys%20and%20compounds&rft.au=Mohamed,%20Nurul%20Aida&rft.date=2020-03-25&rft.volume=818&rft.spage=152916&rft.pages=152916-&rft.artnum=152916&rft.issn=0925-8388&rft.eissn=1873-4669&rft_id=info:doi/10.1016/j.jallcom.2019.152916&rft_dat=%3Cproquest_cross%3E2354309549%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2354309549&rft_id=info:pmid/&rft_els_id=S0925838819341623&rfr_iscdi=true