Hollow Structure VS2@Reduced Graphene Oxide (RGO) Architecture for Enhanced Sodium‐Ion Battery Performance

As a typical two‐dimensional (2D) layered material, (vanadium disulfide) VS2 has huge potentials for application in SIBs due to its large interlayer spacing and high conductivity compared to metal oxide or other 2D materials. Reduced graphene oxide (RGO) possesses exceptional electronic properties a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ChemElectroChem 2020-01, Vol.7 (1), p.78-85
Hauptverfasser: Qi, Haimei, Wang, Lina, Zuo, Tiantian, Deng, Shunlan, Li, Qi, Liu, Zong‐Huai, Hu, Peng, He, Xuexia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 85
container_issue 1
container_start_page 78
container_title ChemElectroChem
container_volume 7
creator Qi, Haimei
Wang, Lina
Zuo, Tiantian
Deng, Shunlan
Li, Qi
Liu, Zong‐Huai
Hu, Peng
He, Xuexia
description As a typical two‐dimensional (2D) layered material, (vanadium disulfide) VS2 has huge potentials for application in SIBs due to its large interlayer spacing and high conductivity compared to metal oxide or other 2D materials. Reduced graphene oxide (RGO) possesses exceptional electronic properties and large specific area favoring fast electron transport and rich redox sites. In this work, VS2 hollow flower spheres and RGO nanocomposites were developed for the first time, it was synthesized using a facile solvothermal method. Benefiting from the exceptional layered structure, when used as the anode material for SIBs at room temperature, the as‐prepared electrode material of VS2 hollow flower spheres @RGO (named as VS2 HFS/RGO) nanocomposites delivers a high reversible discharge specific capacity of around 430 mAh/g at current density of 100 mA/g, superior rate performance (2 A/g) and excellent cycling properties with the discharge capacity remained 350 mAh/g at 100 mA/g after 500 cycles. Results show that the kinetics of VS2 HFS/RGO nanocomposites were mainly a capacitive‐controlled storage process and the high capacity contribution were beneficial for good rate performance. This work could provide new approaches and potentials for exploring and searching high performances anode materials for the practical applications of SIBs. Flower power: A template‐free method is designed to synthesize hollow structured VS2 and VS2@RGO samples. Both of the materials delivered a high specific capacity and exceptional rate performance in a sodium‐ion battery. The contribution of the high capacity was also investigated.
doi_str_mv 10.1002/celc.201901626
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2354092146</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2354092146</sourcerecordid><originalsourceid>FETCH-LOGICAL-g2706-9e31181250e98599e044a4c6d639484d38fcbd5f05666b0c99cd68d596e21d8e3</originalsourceid><addsrcrecordid>eNpN0M9Kw0AQBvBFFCy1V88LXvSQOvsna_ZmDbUtFCqtel3S3YlNSZO6Sai9-Qg-o09iQ0U8zQz8-AY-Qi4Z9BkAv7WY2z4HpoEprk5IhzOtAuBMnf7bz0mvqtYAwBiEIlIdko_LPC93dFH7xtaNR_q64PdzdI1FR0c-2a6wQDr7yBzS6_lodkMH3q6yGo86LT0dFqukaPmidFmz-f78mpQFfUjqGv2ePqE_oE0rLshZmuQV9n5nl7w8Dp_jcTCdjSbxYBq88TtQgUbBWMR4CKijUGsEKRNplVNCy0g6EaV26cIUQqXUEqzW1qnIhVohZy5C0SVXx9ytL98brGqzLhtfHF4aLkIJmjOpDkof1S7LcW-2Ptskfm8YmLZR0zZq_ho18XAa_13iBzrCa_Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2354092146</pqid></control><display><type>article</type><title>Hollow Structure VS2@Reduced Graphene Oxide (RGO) Architecture for Enhanced Sodium‐Ion Battery Performance</title><source>Wiley Online Library All Journals</source><creator>Qi, Haimei ; Wang, Lina ; Zuo, Tiantian ; Deng, Shunlan ; Li, Qi ; Liu, Zong‐Huai ; Hu, Peng ; He, Xuexia</creator><creatorcontrib>Qi, Haimei ; Wang, Lina ; Zuo, Tiantian ; Deng, Shunlan ; Li, Qi ; Liu, Zong‐Huai ; Hu, Peng ; He, Xuexia</creatorcontrib><description>As a typical two‐dimensional (2D) layered material, (vanadium disulfide) VS2 has huge potentials for application in SIBs due to its large interlayer spacing and high conductivity compared to metal oxide or other 2D materials. Reduced graphene oxide (RGO) possesses exceptional electronic properties and large specific area favoring fast electron transport and rich redox sites. In this work, VS2 hollow flower spheres and RGO nanocomposites were developed for the first time, it was synthesized using a facile solvothermal method. Benefiting from the exceptional layered structure, when used as the anode material for SIBs at room temperature, the as‐prepared electrode material of VS2 hollow flower spheres @RGO (named as VS2 HFS/RGO) nanocomposites delivers a high reversible discharge specific capacity of around 430 mAh/g at current density of 100 mA/g, superior rate performance (2 A/g) and excellent cycling properties with the discharge capacity remained 350 mAh/g at 100 mA/g after 500 cycles. Results show that the kinetics of VS2 HFS/RGO nanocomposites were mainly a capacitive‐controlled storage process and the high capacity contribution were beneficial for good rate performance. This work could provide new approaches and potentials for exploring and searching high performances anode materials for the practical applications of SIBs. Flower power: A template‐free method is designed to synthesize hollow structured VS2 and VS2@RGO samples. Both of the materials delivered a high specific capacity and exceptional rate performance in a sodium‐ion battery. The contribution of the high capacity was also investigated.</description><identifier>ISSN: 2196-0216</identifier><identifier>EISSN: 2196-0216</identifier><identifier>DOI: 10.1002/celc.201901626</identifier><language>eng</language><publisher>Weinheim: John Wiley &amp; Sons, Inc</publisher><subject>Anodes ; Discharge ; Electrode materials ; Electron transport ; Electronic properties ; Graphene ; hollow structure ; Interlayers ; Metal oxides ; morphology control ; Nanocomposites ; Rechargeable batteries ; Room temperature ; Sodium-ion batteries ; sodium-ion battery ; Two dimensional materials ; vanadium disulfide</subject><ispartof>ChemElectroChem, 2020-01, Vol.7 (1), p.78-85</ispartof><rights>2020 Wiley‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcelc.201901626$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcelc.201901626$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids></links><search><creatorcontrib>Qi, Haimei</creatorcontrib><creatorcontrib>Wang, Lina</creatorcontrib><creatorcontrib>Zuo, Tiantian</creatorcontrib><creatorcontrib>Deng, Shunlan</creatorcontrib><creatorcontrib>Li, Qi</creatorcontrib><creatorcontrib>Liu, Zong‐Huai</creatorcontrib><creatorcontrib>Hu, Peng</creatorcontrib><creatorcontrib>He, Xuexia</creatorcontrib><title>Hollow Structure VS2@Reduced Graphene Oxide (RGO) Architecture for Enhanced Sodium‐Ion Battery Performance</title><title>ChemElectroChem</title><description>As a typical two‐dimensional (2D) layered material, (vanadium disulfide) VS2 has huge potentials for application in SIBs due to its large interlayer spacing and high conductivity compared to metal oxide or other 2D materials. Reduced graphene oxide (RGO) possesses exceptional electronic properties and large specific area favoring fast electron transport and rich redox sites. In this work, VS2 hollow flower spheres and RGO nanocomposites were developed for the first time, it was synthesized using a facile solvothermal method. Benefiting from the exceptional layered structure, when used as the anode material for SIBs at room temperature, the as‐prepared electrode material of VS2 hollow flower spheres @RGO (named as VS2 HFS/RGO) nanocomposites delivers a high reversible discharge specific capacity of around 430 mAh/g at current density of 100 mA/g, superior rate performance (2 A/g) and excellent cycling properties with the discharge capacity remained 350 mAh/g at 100 mA/g after 500 cycles. Results show that the kinetics of VS2 HFS/RGO nanocomposites were mainly a capacitive‐controlled storage process and the high capacity contribution were beneficial for good rate performance. This work could provide new approaches and potentials for exploring and searching high performances anode materials for the practical applications of SIBs. Flower power: A template‐free method is designed to synthesize hollow structured VS2 and VS2@RGO samples. Both of the materials delivered a high specific capacity and exceptional rate performance in a sodium‐ion battery. The contribution of the high capacity was also investigated.</description><subject>Anodes</subject><subject>Discharge</subject><subject>Electrode materials</subject><subject>Electron transport</subject><subject>Electronic properties</subject><subject>Graphene</subject><subject>hollow structure</subject><subject>Interlayers</subject><subject>Metal oxides</subject><subject>morphology control</subject><subject>Nanocomposites</subject><subject>Rechargeable batteries</subject><subject>Room temperature</subject><subject>Sodium-ion batteries</subject><subject>sodium-ion battery</subject><subject>Two dimensional materials</subject><subject>vanadium disulfide</subject><issn>2196-0216</issn><issn>2196-0216</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpN0M9Kw0AQBvBFFCy1V88LXvSQOvsna_ZmDbUtFCqtel3S3YlNSZO6Sai9-Qg-o09iQ0U8zQz8-AY-Qi4Z9BkAv7WY2z4HpoEprk5IhzOtAuBMnf7bz0mvqtYAwBiEIlIdko_LPC93dFH7xtaNR_q64PdzdI1FR0c-2a6wQDr7yBzS6_lodkMH3q6yGo86LT0dFqukaPmidFmz-f78mpQFfUjqGv2ePqE_oE0rLshZmuQV9n5nl7w8Dp_jcTCdjSbxYBq88TtQgUbBWMR4CKijUGsEKRNplVNCy0g6EaV26cIUQqXUEqzW1qnIhVohZy5C0SVXx9ytL98brGqzLhtfHF4aLkIJmjOpDkof1S7LcW-2Ptskfm8YmLZR0zZq_ho18XAa_13iBzrCa_Y</recordid><startdate>20200102</startdate><enddate>20200102</enddate><creator>Qi, Haimei</creator><creator>Wang, Lina</creator><creator>Zuo, Tiantian</creator><creator>Deng, Shunlan</creator><creator>Li, Qi</creator><creator>Liu, Zong‐Huai</creator><creator>Hu, Peng</creator><creator>He, Xuexia</creator><general>John Wiley &amp; Sons, Inc</general><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20200102</creationdate><title>Hollow Structure VS2@Reduced Graphene Oxide (RGO) Architecture for Enhanced Sodium‐Ion Battery Performance</title><author>Qi, Haimei ; Wang, Lina ; Zuo, Tiantian ; Deng, Shunlan ; Li, Qi ; Liu, Zong‐Huai ; Hu, Peng ; He, Xuexia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g2706-9e31181250e98599e044a4c6d639484d38fcbd5f05666b0c99cd68d596e21d8e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Anodes</topic><topic>Discharge</topic><topic>Electrode materials</topic><topic>Electron transport</topic><topic>Electronic properties</topic><topic>Graphene</topic><topic>hollow structure</topic><topic>Interlayers</topic><topic>Metal oxides</topic><topic>morphology control</topic><topic>Nanocomposites</topic><topic>Rechargeable batteries</topic><topic>Room temperature</topic><topic>Sodium-ion batteries</topic><topic>sodium-ion battery</topic><topic>Two dimensional materials</topic><topic>vanadium disulfide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qi, Haimei</creatorcontrib><creatorcontrib>Wang, Lina</creatorcontrib><creatorcontrib>Zuo, Tiantian</creatorcontrib><creatorcontrib>Deng, Shunlan</creatorcontrib><creatorcontrib>Li, Qi</creatorcontrib><creatorcontrib>Liu, Zong‐Huai</creatorcontrib><creatorcontrib>Hu, Peng</creatorcontrib><creatorcontrib>He, Xuexia</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>ChemElectroChem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qi, Haimei</au><au>Wang, Lina</au><au>Zuo, Tiantian</au><au>Deng, Shunlan</au><au>Li, Qi</au><au>Liu, Zong‐Huai</au><au>Hu, Peng</au><au>He, Xuexia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hollow Structure VS2@Reduced Graphene Oxide (RGO) Architecture for Enhanced Sodium‐Ion Battery Performance</atitle><jtitle>ChemElectroChem</jtitle><date>2020-01-02</date><risdate>2020</risdate><volume>7</volume><issue>1</issue><spage>78</spage><epage>85</epage><pages>78-85</pages><issn>2196-0216</issn><eissn>2196-0216</eissn><abstract>As a typical two‐dimensional (2D) layered material, (vanadium disulfide) VS2 has huge potentials for application in SIBs due to its large interlayer spacing and high conductivity compared to metal oxide or other 2D materials. Reduced graphene oxide (RGO) possesses exceptional electronic properties and large specific area favoring fast electron transport and rich redox sites. In this work, VS2 hollow flower spheres and RGO nanocomposites were developed for the first time, it was synthesized using a facile solvothermal method. Benefiting from the exceptional layered structure, when used as the anode material for SIBs at room temperature, the as‐prepared electrode material of VS2 hollow flower spheres @RGO (named as VS2 HFS/RGO) nanocomposites delivers a high reversible discharge specific capacity of around 430 mAh/g at current density of 100 mA/g, superior rate performance (2 A/g) and excellent cycling properties with the discharge capacity remained 350 mAh/g at 100 mA/g after 500 cycles. Results show that the kinetics of VS2 HFS/RGO nanocomposites were mainly a capacitive‐controlled storage process and the high capacity contribution were beneficial for good rate performance. This work could provide new approaches and potentials for exploring and searching high performances anode materials for the practical applications of SIBs. Flower power: A template‐free method is designed to synthesize hollow structured VS2 and VS2@RGO samples. Both of the materials delivered a high specific capacity and exceptional rate performance in a sodium‐ion battery. The contribution of the high capacity was also investigated.</abstract><cop>Weinheim</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/celc.201901626</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2196-0216
ispartof ChemElectroChem, 2020-01, Vol.7 (1), p.78-85
issn 2196-0216
2196-0216
language eng
recordid cdi_proquest_journals_2354092146
source Wiley Online Library All Journals
subjects Anodes
Discharge
Electrode materials
Electron transport
Electronic properties
Graphene
hollow structure
Interlayers
Metal oxides
morphology control
Nanocomposites
Rechargeable batteries
Room temperature
Sodium-ion batteries
sodium-ion battery
Two dimensional materials
vanadium disulfide
title Hollow Structure VS2@Reduced Graphene Oxide (RGO) Architecture for Enhanced Sodium‐Ion Battery Performance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T00%3A15%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hollow%20Structure%20VS2@Reduced%20Graphene%20Oxide%20(RGO)%20Architecture%20for%20Enhanced%20Sodium%E2%80%90Ion%20Battery%20Performance&rft.jtitle=ChemElectroChem&rft.au=Qi,%20Haimei&rft.date=2020-01-02&rft.volume=7&rft.issue=1&rft.spage=78&rft.epage=85&rft.pages=78-85&rft.issn=2196-0216&rft.eissn=2196-0216&rft_id=info:doi/10.1002/celc.201901626&rft_dat=%3Cproquest_wiley%3E2354092146%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2354092146&rft_id=info:pmid/&rfr_iscdi=true