Hollow Structure VS2@Reduced Graphene Oxide (RGO) Architecture for Enhanced Sodium‐Ion Battery Performance
As a typical two‐dimensional (2D) layered material, (vanadium disulfide) VS2 has huge potentials for application in SIBs due to its large interlayer spacing and high conductivity compared to metal oxide or other 2D materials. Reduced graphene oxide (RGO) possesses exceptional electronic properties a...
Gespeichert in:
Veröffentlicht in: | ChemElectroChem 2020-01, Vol.7 (1), p.78-85 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 85 |
---|---|
container_issue | 1 |
container_start_page | 78 |
container_title | ChemElectroChem |
container_volume | 7 |
creator | Qi, Haimei Wang, Lina Zuo, Tiantian Deng, Shunlan Li, Qi Liu, Zong‐Huai Hu, Peng He, Xuexia |
description | As a typical two‐dimensional (2D) layered material, (vanadium disulfide) VS2 has huge potentials for application in SIBs due to its large interlayer spacing and high conductivity compared to metal oxide or other 2D materials. Reduced graphene oxide (RGO) possesses exceptional electronic properties and large specific area favoring fast electron transport and rich redox sites. In this work, VS2 hollow flower spheres and RGO nanocomposites were developed for the first time, it was synthesized using a facile solvothermal method. Benefiting from the exceptional layered structure, when used as the anode material for SIBs at room temperature, the as‐prepared electrode material of VS2 hollow flower spheres @RGO (named as VS2 HFS/RGO) nanocomposites delivers a high reversible discharge specific capacity of around 430 mAh/g at current density of 100 mA/g, superior rate performance (2 A/g) and excellent cycling properties with the discharge capacity remained 350 mAh/g at 100 mA/g after 500 cycles. Results show that the kinetics of VS2 HFS/RGO nanocomposites were mainly a capacitive‐controlled storage process and the high capacity contribution were beneficial for good rate performance. This work could provide new approaches and potentials for exploring and searching high performances anode materials for the practical applications of SIBs.
Flower power: A template‐free method is designed to synthesize hollow structured VS2 and VS2@RGO samples. Both of the materials delivered a high specific capacity and exceptional rate performance in a sodium‐ion battery. The contribution of the high capacity was also investigated. |
doi_str_mv | 10.1002/celc.201901626 |
format | Article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2354092146</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2354092146</sourcerecordid><originalsourceid>FETCH-LOGICAL-g2706-9e31181250e98599e044a4c6d639484d38fcbd5f05666b0c99cd68d596e21d8e3</originalsourceid><addsrcrecordid>eNpN0M9Kw0AQBvBFFCy1V88LXvSQOvsna_ZmDbUtFCqtel3S3YlNSZO6Sai9-Qg-o09iQ0U8zQz8-AY-Qi4Z9BkAv7WY2z4HpoEprk5IhzOtAuBMnf7bz0mvqtYAwBiEIlIdko_LPC93dFH7xtaNR_q64PdzdI1FR0c-2a6wQDr7yBzS6_lodkMH3q6yGo86LT0dFqukaPmidFmz-f78mpQFfUjqGv2ePqE_oE0rLshZmuQV9n5nl7w8Dp_jcTCdjSbxYBq88TtQgUbBWMR4CKijUGsEKRNplVNCy0g6EaV26cIUQqXUEqzW1qnIhVohZy5C0SVXx9ytL98brGqzLhtfHF4aLkIJmjOpDkof1S7LcW-2Ptskfm8YmLZR0zZq_ho18XAa_13iBzrCa_Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2354092146</pqid></control><display><type>article</type><title>Hollow Structure VS2@Reduced Graphene Oxide (RGO) Architecture for Enhanced Sodium‐Ion Battery Performance</title><source>Wiley Online Library All Journals</source><creator>Qi, Haimei ; Wang, Lina ; Zuo, Tiantian ; Deng, Shunlan ; Li, Qi ; Liu, Zong‐Huai ; Hu, Peng ; He, Xuexia</creator><creatorcontrib>Qi, Haimei ; Wang, Lina ; Zuo, Tiantian ; Deng, Shunlan ; Li, Qi ; Liu, Zong‐Huai ; Hu, Peng ; He, Xuexia</creatorcontrib><description>As a typical two‐dimensional (2D) layered material, (vanadium disulfide) VS2 has huge potentials for application in SIBs due to its large interlayer spacing and high conductivity compared to metal oxide or other 2D materials. Reduced graphene oxide (RGO) possesses exceptional electronic properties and large specific area favoring fast electron transport and rich redox sites. In this work, VS2 hollow flower spheres and RGO nanocomposites were developed for the first time, it was synthesized using a facile solvothermal method. Benefiting from the exceptional layered structure, when used as the anode material for SIBs at room temperature, the as‐prepared electrode material of VS2 hollow flower spheres @RGO (named as VS2 HFS/RGO) nanocomposites delivers a high reversible discharge specific capacity of around 430 mAh/g at current density of 100 mA/g, superior rate performance (2 A/g) and excellent cycling properties with the discharge capacity remained 350 mAh/g at 100 mA/g after 500 cycles. Results show that the kinetics of VS2 HFS/RGO nanocomposites were mainly a capacitive‐controlled storage process and the high capacity contribution were beneficial for good rate performance. This work could provide new approaches and potentials for exploring and searching high performances anode materials for the practical applications of SIBs.
Flower power: A template‐free method is designed to synthesize hollow structured VS2 and VS2@RGO samples. Both of the materials delivered a high specific capacity and exceptional rate performance in a sodium‐ion battery. The contribution of the high capacity was also investigated.</description><identifier>ISSN: 2196-0216</identifier><identifier>EISSN: 2196-0216</identifier><identifier>DOI: 10.1002/celc.201901626</identifier><language>eng</language><publisher>Weinheim: John Wiley & Sons, Inc</publisher><subject>Anodes ; Discharge ; Electrode materials ; Electron transport ; Electronic properties ; Graphene ; hollow structure ; Interlayers ; Metal oxides ; morphology control ; Nanocomposites ; Rechargeable batteries ; Room temperature ; Sodium-ion batteries ; sodium-ion battery ; Two dimensional materials ; vanadium disulfide</subject><ispartof>ChemElectroChem, 2020-01, Vol.7 (1), p.78-85</ispartof><rights>2020 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcelc.201901626$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcelc.201901626$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids></links><search><creatorcontrib>Qi, Haimei</creatorcontrib><creatorcontrib>Wang, Lina</creatorcontrib><creatorcontrib>Zuo, Tiantian</creatorcontrib><creatorcontrib>Deng, Shunlan</creatorcontrib><creatorcontrib>Li, Qi</creatorcontrib><creatorcontrib>Liu, Zong‐Huai</creatorcontrib><creatorcontrib>Hu, Peng</creatorcontrib><creatorcontrib>He, Xuexia</creatorcontrib><title>Hollow Structure VS2@Reduced Graphene Oxide (RGO) Architecture for Enhanced Sodium‐Ion Battery Performance</title><title>ChemElectroChem</title><description>As a typical two‐dimensional (2D) layered material, (vanadium disulfide) VS2 has huge potentials for application in SIBs due to its large interlayer spacing and high conductivity compared to metal oxide or other 2D materials. Reduced graphene oxide (RGO) possesses exceptional electronic properties and large specific area favoring fast electron transport and rich redox sites. In this work, VS2 hollow flower spheres and RGO nanocomposites were developed for the first time, it was synthesized using a facile solvothermal method. Benefiting from the exceptional layered structure, when used as the anode material for SIBs at room temperature, the as‐prepared electrode material of VS2 hollow flower spheres @RGO (named as VS2 HFS/RGO) nanocomposites delivers a high reversible discharge specific capacity of around 430 mAh/g at current density of 100 mA/g, superior rate performance (2 A/g) and excellent cycling properties with the discharge capacity remained 350 mAh/g at 100 mA/g after 500 cycles. Results show that the kinetics of VS2 HFS/RGO nanocomposites were mainly a capacitive‐controlled storage process and the high capacity contribution were beneficial for good rate performance. This work could provide new approaches and potentials for exploring and searching high performances anode materials for the practical applications of SIBs.
Flower power: A template‐free method is designed to synthesize hollow structured VS2 and VS2@RGO samples. Both of the materials delivered a high specific capacity and exceptional rate performance in a sodium‐ion battery. The contribution of the high capacity was also investigated.</description><subject>Anodes</subject><subject>Discharge</subject><subject>Electrode materials</subject><subject>Electron transport</subject><subject>Electronic properties</subject><subject>Graphene</subject><subject>hollow structure</subject><subject>Interlayers</subject><subject>Metal oxides</subject><subject>morphology control</subject><subject>Nanocomposites</subject><subject>Rechargeable batteries</subject><subject>Room temperature</subject><subject>Sodium-ion batteries</subject><subject>sodium-ion battery</subject><subject>Two dimensional materials</subject><subject>vanadium disulfide</subject><issn>2196-0216</issn><issn>2196-0216</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpN0M9Kw0AQBvBFFCy1V88LXvSQOvsna_ZmDbUtFCqtel3S3YlNSZO6Sai9-Qg-o09iQ0U8zQz8-AY-Qi4Z9BkAv7WY2z4HpoEprk5IhzOtAuBMnf7bz0mvqtYAwBiEIlIdko_LPC93dFH7xtaNR_q64PdzdI1FR0c-2a6wQDr7yBzS6_lodkMH3q6yGo86LT0dFqukaPmidFmz-f78mpQFfUjqGv2ePqE_oE0rLshZmuQV9n5nl7w8Dp_jcTCdjSbxYBq88TtQgUbBWMR4CKijUGsEKRNplVNCy0g6EaV26cIUQqXUEqzW1qnIhVohZy5C0SVXx9ytL98brGqzLhtfHF4aLkIJmjOpDkof1S7LcW-2Ptskfm8YmLZR0zZq_ho18XAa_13iBzrCa_Y</recordid><startdate>20200102</startdate><enddate>20200102</enddate><creator>Qi, Haimei</creator><creator>Wang, Lina</creator><creator>Zuo, Tiantian</creator><creator>Deng, Shunlan</creator><creator>Li, Qi</creator><creator>Liu, Zong‐Huai</creator><creator>Hu, Peng</creator><creator>He, Xuexia</creator><general>John Wiley & Sons, Inc</general><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20200102</creationdate><title>Hollow Structure VS2@Reduced Graphene Oxide (RGO) Architecture for Enhanced Sodium‐Ion Battery Performance</title><author>Qi, Haimei ; Wang, Lina ; Zuo, Tiantian ; Deng, Shunlan ; Li, Qi ; Liu, Zong‐Huai ; Hu, Peng ; He, Xuexia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g2706-9e31181250e98599e044a4c6d639484d38fcbd5f05666b0c99cd68d596e21d8e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Anodes</topic><topic>Discharge</topic><topic>Electrode materials</topic><topic>Electron transport</topic><topic>Electronic properties</topic><topic>Graphene</topic><topic>hollow structure</topic><topic>Interlayers</topic><topic>Metal oxides</topic><topic>morphology control</topic><topic>Nanocomposites</topic><topic>Rechargeable batteries</topic><topic>Room temperature</topic><topic>Sodium-ion batteries</topic><topic>sodium-ion battery</topic><topic>Two dimensional materials</topic><topic>vanadium disulfide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qi, Haimei</creatorcontrib><creatorcontrib>Wang, Lina</creatorcontrib><creatorcontrib>Zuo, Tiantian</creatorcontrib><creatorcontrib>Deng, Shunlan</creatorcontrib><creatorcontrib>Li, Qi</creatorcontrib><creatorcontrib>Liu, Zong‐Huai</creatorcontrib><creatorcontrib>Hu, Peng</creatorcontrib><creatorcontrib>He, Xuexia</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>ChemElectroChem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qi, Haimei</au><au>Wang, Lina</au><au>Zuo, Tiantian</au><au>Deng, Shunlan</au><au>Li, Qi</au><au>Liu, Zong‐Huai</au><au>Hu, Peng</au><au>He, Xuexia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hollow Structure VS2@Reduced Graphene Oxide (RGO) Architecture for Enhanced Sodium‐Ion Battery Performance</atitle><jtitle>ChemElectroChem</jtitle><date>2020-01-02</date><risdate>2020</risdate><volume>7</volume><issue>1</issue><spage>78</spage><epage>85</epage><pages>78-85</pages><issn>2196-0216</issn><eissn>2196-0216</eissn><abstract>As a typical two‐dimensional (2D) layered material, (vanadium disulfide) VS2 has huge potentials for application in SIBs due to its large interlayer spacing and high conductivity compared to metal oxide or other 2D materials. Reduced graphene oxide (RGO) possesses exceptional electronic properties and large specific area favoring fast electron transport and rich redox sites. In this work, VS2 hollow flower spheres and RGO nanocomposites were developed for the first time, it was synthesized using a facile solvothermal method. Benefiting from the exceptional layered structure, when used as the anode material for SIBs at room temperature, the as‐prepared electrode material of VS2 hollow flower spheres @RGO (named as VS2 HFS/RGO) nanocomposites delivers a high reversible discharge specific capacity of around 430 mAh/g at current density of 100 mA/g, superior rate performance (2 A/g) and excellent cycling properties with the discharge capacity remained 350 mAh/g at 100 mA/g after 500 cycles. Results show that the kinetics of VS2 HFS/RGO nanocomposites were mainly a capacitive‐controlled storage process and the high capacity contribution were beneficial for good rate performance. This work could provide new approaches and potentials for exploring and searching high performances anode materials for the practical applications of SIBs.
Flower power: A template‐free method is designed to synthesize hollow structured VS2 and VS2@RGO samples. Both of the materials delivered a high specific capacity and exceptional rate performance in a sodium‐ion battery. The contribution of the high capacity was also investigated.</abstract><cop>Weinheim</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/celc.201901626</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2196-0216 |
ispartof | ChemElectroChem, 2020-01, Vol.7 (1), p.78-85 |
issn | 2196-0216 2196-0216 |
language | eng |
recordid | cdi_proquest_journals_2354092146 |
source | Wiley Online Library All Journals |
subjects | Anodes Discharge Electrode materials Electron transport Electronic properties Graphene hollow structure Interlayers Metal oxides morphology control Nanocomposites Rechargeable batteries Room temperature Sodium-ion batteries sodium-ion battery Two dimensional materials vanadium disulfide |
title | Hollow Structure VS2@Reduced Graphene Oxide (RGO) Architecture for Enhanced Sodium‐Ion Battery Performance |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T00%3A15%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hollow%20Structure%20VS2@Reduced%20Graphene%20Oxide%20(RGO)%20Architecture%20for%20Enhanced%20Sodium%E2%80%90Ion%20Battery%20Performance&rft.jtitle=ChemElectroChem&rft.au=Qi,%20Haimei&rft.date=2020-01-02&rft.volume=7&rft.issue=1&rft.spage=78&rft.epage=85&rft.pages=78-85&rft.issn=2196-0216&rft.eissn=2196-0216&rft_id=info:doi/10.1002/celc.201901626&rft_dat=%3Cproquest_wiley%3E2354092146%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2354092146&rft_id=info:pmid/&rfr_iscdi=true |