Electrocatalysis of Oxygen on Bifunctional Nickel‐Cobaltite Spinel

Transition‐metal‐based materials are among the most active and durable catalysts for the effective electrocatalysis of oxygen‐related reactions. Herein, we present a study on bifunctional catalysts as air electrodes aimed at metal‐air batteries based on nickel and cobalt spinel (NiCo2O4) supported o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ChemElectroChem 2020-01, Vol.7 (1), p.124-130
Hauptverfasser: Alegre, Cinthia, Busacca, Concetta, Di Blasi, Alessandra, Di Blasi, Orazio, Aricò, Antonino S., Antonucci, Vincenzo, Baglio, Vincenzo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 130
container_issue 1
container_start_page 124
container_title ChemElectroChem
container_volume 7
creator Alegre, Cinthia
Busacca, Concetta
Di Blasi, Alessandra
Di Blasi, Orazio
Aricò, Antonino S.
Antonucci, Vincenzo
Baglio, Vincenzo
description Transition‐metal‐based materials are among the most active and durable catalysts for the effective electrocatalysis of oxygen‐related reactions. Herein, we present a study on bifunctional catalysts as air electrodes aimed at metal‐air batteries based on nickel and cobalt spinel (NiCo2O4) supported on electrospun carbon nanofibers. The physicochemical features of these transition‐metal‐based catalysts are essential for the understanding of their electrochemical activity. Results show that the major presence of oxidized Ni and Co species (Ni3+ and Co3+) produces higher activity for the oxygen evolution reaction (OER), whereas lower oxidation states of the metals (Ni2+, Co2+, Ni0 and Co0) together with the presence of N‐doped carbon lead to enhanced oxygen reduction reaction (ORR) performance. This study highlights the importance of designing catalysts in terms of crystallographic structure and proper oxidation states of the elements for maximizing their performance. Spin me round: Transition‐metal‐based materials are among the most active and durable catalysts for the effective electrocatalysis of oxygen‐related reactions. NiCo2O4 spinel supported on electrospun carbon nanofibers presents good performance and bifunctionality for both the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). Oxidized species (Ni3+ and Co3+) enhance OER, whereas lower oxidation states (Ni2+, Co2+, Ni0 and Co0) enhance ORR.
doi_str_mv 10.1002/celc.201901584
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2354091244</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2354091244</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4604-b5024b1ee53c78f980d09b3153b0ac15157647457ebb436d64e7c1d850c8bdbc3</originalsourceid><addsrcrecordid>eNqFkLtOwzAUQC0EElXpyhyJOeVeP_IYIZSHVNEBmK3YcZCLiYudCrLxCXwjX0KrImBjunc45-rqEHKMMEUAeqqN01MKWAKKgu-REcUyS4Fitv9nPySTGJcAgAiCFdmIXMyc0X3wuu5rN0QbE98mi7fh0XSJ75Jz26473Vvf1S65tfrJuM_3j8qr2vW2N8ndynbGHZGDtnbRTL7nmDxczu6r63S-uLqpzuap5hnwVAmgXKExgum8aMsCGigVQ8EU1BoFijzjORe5UYqzrMm4yTU2hQBdqEZpNiYnu7ur4F_WJvZy6ddh81qUlAkOJVLON9R0R-ngYwymlatgn-swSAS5jSW3seRPrI1Q7oRX68zwDy2r2bz6db8A_aFtvw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2354091244</pqid></control><display><type>article</type><title>Electrocatalysis of Oxygen on Bifunctional Nickel‐Cobaltite Spinel</title><source>Wiley Online Library All Journals</source><creator>Alegre, Cinthia ; Busacca, Concetta ; Di Blasi, Alessandra ; Di Blasi, Orazio ; Aricò, Antonino S. ; Antonucci, Vincenzo ; Baglio, Vincenzo</creator><creatorcontrib>Alegre, Cinthia ; Busacca, Concetta ; Di Blasi, Alessandra ; Di Blasi, Orazio ; Aricò, Antonino S. ; Antonucci, Vincenzo ; Baglio, Vincenzo</creatorcontrib><description>Transition‐metal‐based materials are among the most active and durable catalysts for the effective electrocatalysis of oxygen‐related reactions. Herein, we present a study on bifunctional catalysts as air electrodes aimed at metal‐air batteries based on nickel and cobalt spinel (NiCo2O4) supported on electrospun carbon nanofibers. The physicochemical features of these transition‐metal‐based catalysts are essential for the understanding of their electrochemical activity. Results show that the major presence of oxidized Ni and Co species (Ni3+ and Co3+) produces higher activity for the oxygen evolution reaction (OER), whereas lower oxidation states of the metals (Ni2+, Co2+, Ni0 and Co0) together with the presence of N‐doped carbon lead to enhanced oxygen reduction reaction (ORR) performance. This study highlights the importance of designing catalysts in terms of crystallographic structure and proper oxidation states of the elements for maximizing their performance. Spin me round: Transition‐metal‐based materials are among the most active and durable catalysts for the effective electrocatalysis of oxygen‐related reactions. NiCo2O4 spinel supported on electrospun carbon nanofibers presents good performance and bifunctionality for both the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). Oxidized species (Ni3+ and Co3+) enhance OER, whereas lower oxidation states (Ni2+, Co2+, Ni0 and Co0) enhance ORR.</description><identifier>ISSN: 2196-0216</identifier><identifier>EISSN: 2196-0216</identifier><identifier>DOI: 10.1002/celc.201901584</identifier><language>eng</language><publisher>Weinheim: John Wiley &amp; Sons, Inc</publisher><subject>bifunctional oxygen electrodes ; Carbon fibers ; carbon nanofibers ; Catalysts ; Cobalt ; Crystal structure ; Crystallography ; Electrocatalysis ; Nanofibers ; Nickel ; Oxidation ; oxygen evolution ; Oxygen evolution reactions ; oxygen reduction ; Oxygen reduction reactions ; Spinel</subject><ispartof>ChemElectroChem, 2020-01, Vol.7 (1), p.124-130</ispartof><rights>2020 Wiley‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4604-b5024b1ee53c78f980d09b3153b0ac15157647457ebb436d64e7c1d850c8bdbc3</citedby><cites>FETCH-LOGICAL-c4604-b5024b1ee53c78f980d09b3153b0ac15157647457ebb436d64e7c1d850c8bdbc3</cites><orcidid>0000-0002-0541-7169</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcelc.201901584$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcelc.201901584$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids></links><search><creatorcontrib>Alegre, Cinthia</creatorcontrib><creatorcontrib>Busacca, Concetta</creatorcontrib><creatorcontrib>Di Blasi, Alessandra</creatorcontrib><creatorcontrib>Di Blasi, Orazio</creatorcontrib><creatorcontrib>Aricò, Antonino S.</creatorcontrib><creatorcontrib>Antonucci, Vincenzo</creatorcontrib><creatorcontrib>Baglio, Vincenzo</creatorcontrib><title>Electrocatalysis of Oxygen on Bifunctional Nickel‐Cobaltite Spinel</title><title>ChemElectroChem</title><description>Transition‐metal‐based materials are among the most active and durable catalysts for the effective electrocatalysis of oxygen‐related reactions. Herein, we present a study on bifunctional catalysts as air electrodes aimed at metal‐air batteries based on nickel and cobalt spinel (NiCo2O4) supported on electrospun carbon nanofibers. The physicochemical features of these transition‐metal‐based catalysts are essential for the understanding of their electrochemical activity. Results show that the major presence of oxidized Ni and Co species (Ni3+ and Co3+) produces higher activity for the oxygen evolution reaction (OER), whereas lower oxidation states of the metals (Ni2+, Co2+, Ni0 and Co0) together with the presence of N‐doped carbon lead to enhanced oxygen reduction reaction (ORR) performance. This study highlights the importance of designing catalysts in terms of crystallographic structure and proper oxidation states of the elements for maximizing their performance. Spin me round: Transition‐metal‐based materials are among the most active and durable catalysts for the effective electrocatalysis of oxygen‐related reactions. NiCo2O4 spinel supported on electrospun carbon nanofibers presents good performance and bifunctionality for both the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). Oxidized species (Ni3+ and Co3+) enhance OER, whereas lower oxidation states (Ni2+, Co2+, Ni0 and Co0) enhance ORR.</description><subject>bifunctional oxygen electrodes</subject><subject>Carbon fibers</subject><subject>carbon nanofibers</subject><subject>Catalysts</subject><subject>Cobalt</subject><subject>Crystal structure</subject><subject>Crystallography</subject><subject>Electrocatalysis</subject><subject>Nanofibers</subject><subject>Nickel</subject><subject>Oxidation</subject><subject>oxygen evolution</subject><subject>Oxygen evolution reactions</subject><subject>oxygen reduction</subject><subject>Oxygen reduction reactions</subject><subject>Spinel</subject><issn>2196-0216</issn><issn>2196-0216</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkLtOwzAUQC0EElXpyhyJOeVeP_IYIZSHVNEBmK3YcZCLiYudCrLxCXwjX0KrImBjunc45-rqEHKMMEUAeqqN01MKWAKKgu-REcUyS4Fitv9nPySTGJcAgAiCFdmIXMyc0X3wuu5rN0QbE98mi7fh0XSJ75Jz26473Vvf1S65tfrJuM_3j8qr2vW2N8ndynbGHZGDtnbRTL7nmDxczu6r63S-uLqpzuap5hnwVAmgXKExgum8aMsCGigVQ8EU1BoFijzjORe5UYqzrMm4yTU2hQBdqEZpNiYnu7ur4F_WJvZy6ddh81qUlAkOJVLON9R0R-ngYwymlatgn-swSAS5jSW3seRPrI1Q7oRX68zwDy2r2bz6db8A_aFtvw</recordid><startdate>20200102</startdate><enddate>20200102</enddate><creator>Alegre, Cinthia</creator><creator>Busacca, Concetta</creator><creator>Di Blasi, Alessandra</creator><creator>Di Blasi, Orazio</creator><creator>Aricò, Antonino S.</creator><creator>Antonucci, Vincenzo</creator><creator>Baglio, Vincenzo</creator><general>John Wiley &amp; Sons, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-0541-7169</orcidid></search><sort><creationdate>20200102</creationdate><title>Electrocatalysis of Oxygen on Bifunctional Nickel‐Cobaltite Spinel</title><author>Alegre, Cinthia ; Busacca, Concetta ; Di Blasi, Alessandra ; Di Blasi, Orazio ; Aricò, Antonino S. ; Antonucci, Vincenzo ; Baglio, Vincenzo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4604-b5024b1ee53c78f980d09b3153b0ac15157647457ebb436d64e7c1d850c8bdbc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>bifunctional oxygen electrodes</topic><topic>Carbon fibers</topic><topic>carbon nanofibers</topic><topic>Catalysts</topic><topic>Cobalt</topic><topic>Crystal structure</topic><topic>Crystallography</topic><topic>Electrocatalysis</topic><topic>Nanofibers</topic><topic>Nickel</topic><topic>Oxidation</topic><topic>oxygen evolution</topic><topic>Oxygen evolution reactions</topic><topic>oxygen reduction</topic><topic>Oxygen reduction reactions</topic><topic>Spinel</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alegre, Cinthia</creatorcontrib><creatorcontrib>Busacca, Concetta</creatorcontrib><creatorcontrib>Di Blasi, Alessandra</creatorcontrib><creatorcontrib>Di Blasi, Orazio</creatorcontrib><creatorcontrib>Aricò, Antonino S.</creatorcontrib><creatorcontrib>Antonucci, Vincenzo</creatorcontrib><creatorcontrib>Baglio, Vincenzo</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>ChemElectroChem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alegre, Cinthia</au><au>Busacca, Concetta</au><au>Di Blasi, Alessandra</au><au>Di Blasi, Orazio</au><au>Aricò, Antonino S.</au><au>Antonucci, Vincenzo</au><au>Baglio, Vincenzo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrocatalysis of Oxygen on Bifunctional Nickel‐Cobaltite Spinel</atitle><jtitle>ChemElectroChem</jtitle><date>2020-01-02</date><risdate>2020</risdate><volume>7</volume><issue>1</issue><spage>124</spage><epage>130</epage><pages>124-130</pages><issn>2196-0216</issn><eissn>2196-0216</eissn><abstract>Transition‐metal‐based materials are among the most active and durable catalysts for the effective electrocatalysis of oxygen‐related reactions. Herein, we present a study on bifunctional catalysts as air electrodes aimed at metal‐air batteries based on nickel and cobalt spinel (NiCo2O4) supported on electrospun carbon nanofibers. The physicochemical features of these transition‐metal‐based catalysts are essential for the understanding of their electrochemical activity. Results show that the major presence of oxidized Ni and Co species (Ni3+ and Co3+) produces higher activity for the oxygen evolution reaction (OER), whereas lower oxidation states of the metals (Ni2+, Co2+, Ni0 and Co0) together with the presence of N‐doped carbon lead to enhanced oxygen reduction reaction (ORR) performance. This study highlights the importance of designing catalysts in terms of crystallographic structure and proper oxidation states of the elements for maximizing their performance. Spin me round: Transition‐metal‐based materials are among the most active and durable catalysts for the effective electrocatalysis of oxygen‐related reactions. NiCo2O4 spinel supported on electrospun carbon nanofibers presents good performance and bifunctionality for both the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). Oxidized species (Ni3+ and Co3+) enhance OER, whereas lower oxidation states (Ni2+, Co2+, Ni0 and Co0) enhance ORR.</abstract><cop>Weinheim</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/celc.201901584</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-0541-7169</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2196-0216
ispartof ChemElectroChem, 2020-01, Vol.7 (1), p.124-130
issn 2196-0216
2196-0216
language eng
recordid cdi_proquest_journals_2354091244
source Wiley Online Library All Journals
subjects bifunctional oxygen electrodes
Carbon fibers
carbon nanofibers
Catalysts
Cobalt
Crystal structure
Crystallography
Electrocatalysis
Nanofibers
Nickel
Oxidation
oxygen evolution
Oxygen evolution reactions
oxygen reduction
Oxygen reduction reactions
Spinel
title Electrocatalysis of Oxygen on Bifunctional Nickel‐Cobaltite Spinel
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T15%3A30%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrocatalysis%20of%20Oxygen%20on%20Bifunctional%20Nickel%E2%80%90Cobaltite%20Spinel&rft.jtitle=ChemElectroChem&rft.au=Alegre,%20Cinthia&rft.date=2020-01-02&rft.volume=7&rft.issue=1&rft.spage=124&rft.epage=130&rft.pages=124-130&rft.issn=2196-0216&rft.eissn=2196-0216&rft_id=info:doi/10.1002/celc.201901584&rft_dat=%3Cproquest_cross%3E2354091244%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2354091244&rft_id=info:pmid/&rfr_iscdi=true