Electrocatalysis of Oxygen on Bifunctional Nickel‐Cobaltite Spinel
Transition‐metal‐based materials are among the most active and durable catalysts for the effective electrocatalysis of oxygen‐related reactions. Herein, we present a study on bifunctional catalysts as air electrodes aimed at metal‐air batteries based on nickel and cobalt spinel (NiCo2O4) supported o...
Gespeichert in:
Veröffentlicht in: | ChemElectroChem 2020-01, Vol.7 (1), p.124-130 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 130 |
---|---|
container_issue | 1 |
container_start_page | 124 |
container_title | ChemElectroChem |
container_volume | 7 |
creator | Alegre, Cinthia Busacca, Concetta Di Blasi, Alessandra Di Blasi, Orazio Aricò, Antonino S. Antonucci, Vincenzo Baglio, Vincenzo |
description | Transition‐metal‐based materials are among the most active and durable catalysts for the effective electrocatalysis of oxygen‐related reactions. Herein, we present a study on bifunctional catalysts as air electrodes aimed at metal‐air batteries based on nickel and cobalt spinel (NiCo2O4) supported on electrospun carbon nanofibers. The physicochemical features of these transition‐metal‐based catalysts are essential for the understanding of their electrochemical activity. Results show that the major presence of oxidized Ni and Co species (Ni3+ and Co3+) produces higher activity for the oxygen evolution reaction (OER), whereas lower oxidation states of the metals (Ni2+, Co2+, Ni0 and Co0) together with the presence of N‐doped carbon lead to enhanced oxygen reduction reaction (ORR) performance. This study highlights the importance of designing catalysts in terms of crystallographic structure and proper oxidation states of the elements for maximizing their performance.
Spin me round: Transition‐metal‐based materials are among the most active and durable catalysts for the effective electrocatalysis of oxygen‐related reactions. NiCo2O4 spinel supported on electrospun carbon nanofibers presents good performance and bifunctionality for both the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). Oxidized species (Ni3+ and Co3+) enhance OER, whereas lower oxidation states (Ni2+, Co2+, Ni0 and Co0) enhance ORR. |
doi_str_mv | 10.1002/celc.201901584 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2354091244</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2354091244</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4604-b5024b1ee53c78f980d09b3153b0ac15157647457ebb436d64e7c1d850c8bdbc3</originalsourceid><addsrcrecordid>eNqFkLtOwzAUQC0EElXpyhyJOeVeP_IYIZSHVNEBmK3YcZCLiYudCrLxCXwjX0KrImBjunc45-rqEHKMMEUAeqqN01MKWAKKgu-REcUyS4Fitv9nPySTGJcAgAiCFdmIXMyc0X3wuu5rN0QbE98mi7fh0XSJ75Jz26473Vvf1S65tfrJuM_3j8qr2vW2N8ndynbGHZGDtnbRTL7nmDxczu6r63S-uLqpzuap5hnwVAmgXKExgum8aMsCGigVQ8EU1BoFijzjORe5UYqzrMm4yTU2hQBdqEZpNiYnu7ur4F_WJvZy6ddh81qUlAkOJVLON9R0R-ngYwymlatgn-swSAS5jSW3seRPrI1Q7oRX68zwDy2r2bz6db8A_aFtvw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2354091244</pqid></control><display><type>article</type><title>Electrocatalysis of Oxygen on Bifunctional Nickel‐Cobaltite Spinel</title><source>Wiley Online Library All Journals</source><creator>Alegre, Cinthia ; Busacca, Concetta ; Di Blasi, Alessandra ; Di Blasi, Orazio ; Aricò, Antonino S. ; Antonucci, Vincenzo ; Baglio, Vincenzo</creator><creatorcontrib>Alegre, Cinthia ; Busacca, Concetta ; Di Blasi, Alessandra ; Di Blasi, Orazio ; Aricò, Antonino S. ; Antonucci, Vincenzo ; Baglio, Vincenzo</creatorcontrib><description>Transition‐metal‐based materials are among the most active and durable catalysts for the effective electrocatalysis of oxygen‐related reactions. Herein, we present a study on bifunctional catalysts as air electrodes aimed at metal‐air batteries based on nickel and cobalt spinel (NiCo2O4) supported on electrospun carbon nanofibers. The physicochemical features of these transition‐metal‐based catalysts are essential for the understanding of their electrochemical activity. Results show that the major presence of oxidized Ni and Co species (Ni3+ and Co3+) produces higher activity for the oxygen evolution reaction (OER), whereas lower oxidation states of the metals (Ni2+, Co2+, Ni0 and Co0) together with the presence of N‐doped carbon lead to enhanced oxygen reduction reaction (ORR) performance. This study highlights the importance of designing catalysts in terms of crystallographic structure and proper oxidation states of the elements for maximizing their performance.
Spin me round: Transition‐metal‐based materials are among the most active and durable catalysts for the effective electrocatalysis of oxygen‐related reactions. NiCo2O4 spinel supported on electrospun carbon nanofibers presents good performance and bifunctionality for both the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). Oxidized species (Ni3+ and Co3+) enhance OER, whereas lower oxidation states (Ni2+, Co2+, Ni0 and Co0) enhance ORR.</description><identifier>ISSN: 2196-0216</identifier><identifier>EISSN: 2196-0216</identifier><identifier>DOI: 10.1002/celc.201901584</identifier><language>eng</language><publisher>Weinheim: John Wiley & Sons, Inc</publisher><subject>bifunctional oxygen electrodes ; Carbon fibers ; carbon nanofibers ; Catalysts ; Cobalt ; Crystal structure ; Crystallography ; Electrocatalysis ; Nanofibers ; Nickel ; Oxidation ; oxygen evolution ; Oxygen evolution reactions ; oxygen reduction ; Oxygen reduction reactions ; Spinel</subject><ispartof>ChemElectroChem, 2020-01, Vol.7 (1), p.124-130</ispartof><rights>2020 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4604-b5024b1ee53c78f980d09b3153b0ac15157647457ebb436d64e7c1d850c8bdbc3</citedby><cites>FETCH-LOGICAL-c4604-b5024b1ee53c78f980d09b3153b0ac15157647457ebb436d64e7c1d850c8bdbc3</cites><orcidid>0000-0002-0541-7169</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcelc.201901584$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcelc.201901584$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids></links><search><creatorcontrib>Alegre, Cinthia</creatorcontrib><creatorcontrib>Busacca, Concetta</creatorcontrib><creatorcontrib>Di Blasi, Alessandra</creatorcontrib><creatorcontrib>Di Blasi, Orazio</creatorcontrib><creatorcontrib>Aricò, Antonino S.</creatorcontrib><creatorcontrib>Antonucci, Vincenzo</creatorcontrib><creatorcontrib>Baglio, Vincenzo</creatorcontrib><title>Electrocatalysis of Oxygen on Bifunctional Nickel‐Cobaltite Spinel</title><title>ChemElectroChem</title><description>Transition‐metal‐based materials are among the most active and durable catalysts for the effective electrocatalysis of oxygen‐related reactions. Herein, we present a study on bifunctional catalysts as air electrodes aimed at metal‐air batteries based on nickel and cobalt spinel (NiCo2O4) supported on electrospun carbon nanofibers. The physicochemical features of these transition‐metal‐based catalysts are essential for the understanding of their electrochemical activity. Results show that the major presence of oxidized Ni and Co species (Ni3+ and Co3+) produces higher activity for the oxygen evolution reaction (OER), whereas lower oxidation states of the metals (Ni2+, Co2+, Ni0 and Co0) together with the presence of N‐doped carbon lead to enhanced oxygen reduction reaction (ORR) performance. This study highlights the importance of designing catalysts in terms of crystallographic structure and proper oxidation states of the elements for maximizing their performance.
Spin me round: Transition‐metal‐based materials are among the most active and durable catalysts for the effective electrocatalysis of oxygen‐related reactions. NiCo2O4 spinel supported on electrospun carbon nanofibers presents good performance and bifunctionality for both the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). Oxidized species (Ni3+ and Co3+) enhance OER, whereas lower oxidation states (Ni2+, Co2+, Ni0 and Co0) enhance ORR.</description><subject>bifunctional oxygen electrodes</subject><subject>Carbon fibers</subject><subject>carbon nanofibers</subject><subject>Catalysts</subject><subject>Cobalt</subject><subject>Crystal structure</subject><subject>Crystallography</subject><subject>Electrocatalysis</subject><subject>Nanofibers</subject><subject>Nickel</subject><subject>Oxidation</subject><subject>oxygen evolution</subject><subject>Oxygen evolution reactions</subject><subject>oxygen reduction</subject><subject>Oxygen reduction reactions</subject><subject>Spinel</subject><issn>2196-0216</issn><issn>2196-0216</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkLtOwzAUQC0EElXpyhyJOeVeP_IYIZSHVNEBmK3YcZCLiYudCrLxCXwjX0KrImBjunc45-rqEHKMMEUAeqqN01MKWAKKgu-REcUyS4Fitv9nPySTGJcAgAiCFdmIXMyc0X3wuu5rN0QbE98mi7fh0XSJ75Jz26473Vvf1S65tfrJuM_3j8qr2vW2N8ndynbGHZGDtnbRTL7nmDxczu6r63S-uLqpzuap5hnwVAmgXKExgum8aMsCGigVQ8EU1BoFijzjORe5UYqzrMm4yTU2hQBdqEZpNiYnu7ur4F_WJvZy6ddh81qUlAkOJVLON9R0R-ngYwymlatgn-swSAS5jSW3seRPrI1Q7oRX68zwDy2r2bz6db8A_aFtvw</recordid><startdate>20200102</startdate><enddate>20200102</enddate><creator>Alegre, Cinthia</creator><creator>Busacca, Concetta</creator><creator>Di Blasi, Alessandra</creator><creator>Di Blasi, Orazio</creator><creator>Aricò, Antonino S.</creator><creator>Antonucci, Vincenzo</creator><creator>Baglio, Vincenzo</creator><general>John Wiley & Sons, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-0541-7169</orcidid></search><sort><creationdate>20200102</creationdate><title>Electrocatalysis of Oxygen on Bifunctional Nickel‐Cobaltite Spinel</title><author>Alegre, Cinthia ; Busacca, Concetta ; Di Blasi, Alessandra ; Di Blasi, Orazio ; Aricò, Antonino S. ; Antonucci, Vincenzo ; Baglio, Vincenzo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4604-b5024b1ee53c78f980d09b3153b0ac15157647457ebb436d64e7c1d850c8bdbc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>bifunctional oxygen electrodes</topic><topic>Carbon fibers</topic><topic>carbon nanofibers</topic><topic>Catalysts</topic><topic>Cobalt</topic><topic>Crystal structure</topic><topic>Crystallography</topic><topic>Electrocatalysis</topic><topic>Nanofibers</topic><topic>Nickel</topic><topic>Oxidation</topic><topic>oxygen evolution</topic><topic>Oxygen evolution reactions</topic><topic>oxygen reduction</topic><topic>Oxygen reduction reactions</topic><topic>Spinel</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alegre, Cinthia</creatorcontrib><creatorcontrib>Busacca, Concetta</creatorcontrib><creatorcontrib>Di Blasi, Alessandra</creatorcontrib><creatorcontrib>Di Blasi, Orazio</creatorcontrib><creatorcontrib>Aricò, Antonino S.</creatorcontrib><creatorcontrib>Antonucci, Vincenzo</creatorcontrib><creatorcontrib>Baglio, Vincenzo</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>ChemElectroChem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alegre, Cinthia</au><au>Busacca, Concetta</au><au>Di Blasi, Alessandra</au><au>Di Blasi, Orazio</au><au>Aricò, Antonino S.</au><au>Antonucci, Vincenzo</au><au>Baglio, Vincenzo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrocatalysis of Oxygen on Bifunctional Nickel‐Cobaltite Spinel</atitle><jtitle>ChemElectroChem</jtitle><date>2020-01-02</date><risdate>2020</risdate><volume>7</volume><issue>1</issue><spage>124</spage><epage>130</epage><pages>124-130</pages><issn>2196-0216</issn><eissn>2196-0216</eissn><abstract>Transition‐metal‐based materials are among the most active and durable catalysts for the effective electrocatalysis of oxygen‐related reactions. Herein, we present a study on bifunctional catalysts as air electrodes aimed at metal‐air batteries based on nickel and cobalt spinel (NiCo2O4) supported on electrospun carbon nanofibers. The physicochemical features of these transition‐metal‐based catalysts are essential for the understanding of their electrochemical activity. Results show that the major presence of oxidized Ni and Co species (Ni3+ and Co3+) produces higher activity for the oxygen evolution reaction (OER), whereas lower oxidation states of the metals (Ni2+, Co2+, Ni0 and Co0) together with the presence of N‐doped carbon lead to enhanced oxygen reduction reaction (ORR) performance. This study highlights the importance of designing catalysts in terms of crystallographic structure and proper oxidation states of the elements for maximizing their performance.
Spin me round: Transition‐metal‐based materials are among the most active and durable catalysts for the effective electrocatalysis of oxygen‐related reactions. NiCo2O4 spinel supported on electrospun carbon nanofibers presents good performance and bifunctionality for both the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). Oxidized species (Ni3+ and Co3+) enhance OER, whereas lower oxidation states (Ni2+, Co2+, Ni0 and Co0) enhance ORR.</abstract><cop>Weinheim</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/celc.201901584</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-0541-7169</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2196-0216 |
ispartof | ChemElectroChem, 2020-01, Vol.7 (1), p.124-130 |
issn | 2196-0216 2196-0216 |
language | eng |
recordid | cdi_proquest_journals_2354091244 |
source | Wiley Online Library All Journals |
subjects | bifunctional oxygen electrodes Carbon fibers carbon nanofibers Catalysts Cobalt Crystal structure Crystallography Electrocatalysis Nanofibers Nickel Oxidation oxygen evolution Oxygen evolution reactions oxygen reduction Oxygen reduction reactions Spinel |
title | Electrocatalysis of Oxygen on Bifunctional Nickel‐Cobaltite Spinel |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T15%3A30%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrocatalysis%20of%20Oxygen%20on%20Bifunctional%20Nickel%E2%80%90Cobaltite%20Spinel&rft.jtitle=ChemElectroChem&rft.au=Alegre,%20Cinthia&rft.date=2020-01-02&rft.volume=7&rft.issue=1&rft.spage=124&rft.epage=130&rft.pages=124-130&rft.issn=2196-0216&rft.eissn=2196-0216&rft_id=info:doi/10.1002/celc.201901584&rft_dat=%3Cproquest_cross%3E2354091244%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2354091244&rft_id=info:pmid/&rfr_iscdi=true |