Elastoplastic Analysis of a Functionally Graded Material Beam Subjected to Uniformly Distributed Load
The elastoplastic behavior of a Functionally Graded Material (FGM) simply supported beam consisting of elastic material A and elastoplastic material B under uniformly distributed load is investigated. A power function is used to describe the volume fractions of the constituent materials, and the ave...
Gespeichert in:
Veröffentlicht in: | Journal of mechanics 2020-02, Vol.36 (1), p.73-85 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 85 |
---|---|
container_issue | 1 |
container_start_page | 73 |
container_title | Journal of mechanics |
container_volume | 36 |
creator | Xue, L. J. Bian, X. Y. Feng, J. J. Liu, J. N. |
description | The elastoplastic behavior of a Functionally Graded Material (FGM) simply supported beam consisting of elastic material A and elastoplastic material B under uniformly distributed load is investigated. A power function is used to describe the volume fractions of the constituent materials, and the average stress of the FGM beam is obtained by using the averaging method. This method can avoid the assumption of the varying properties of the whole material, and can consider the different Possion’s ratios of the different constituent materials. What’s more, only the elastoplastic material B in the FGM beam will yield, and the yield function is determined by the stress of material B only, rather than the average stress of the whole material. The method used in this work is more closer to the real material than the method by assuming the variation of the whole properties of FGM. The theoretical results show a good agreement with the finite element results, which indicates that the method provided in this work is valid. With this method, the variation of the elastic and plastic areas, the stress distribution on the cross section, variation of the curvature and neutral layer, and the residual stress distribution of the FGM beam are discussed through numerical results. This work can provide a new way for the design and in-depth investigation of FGM material. |
doi_str_mv | 10.1017/jmech.2019.40 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2353934784</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2353934784</sourcerecordid><originalsourceid>FETCH-LOGICAL-c221t-e222fd03e018d9b7da9bcedde8c81b9bbb818fafe803f63b57991b882e81ddce3</originalsourceid><addsrcrecordid>eNotkM1PAjEQxRujiQQ5em_iebHTLmx7RAQ0wXhQzk0_Yze7FNvugf_eRZ3DzOTNLy-Th9A9kDkQaB7b3pmvOSUg5jW5QhPgABWnsLwe94Y2VQMCbtEs55aMVQvC2WKC3KZTucTTpQeDV0fVnXPIOHqs8HY4mhLiqHVnvEvKOovfVHEpqA4_OdXjj0G3zpRRLxEfjsHH1I_sc8glBT1cDvuo7B268arLbvY_p-iw3XyuX6r9--51vdpXhlIolaOUekuYI8Ct0I1VQhtnreOGgxZaaw7cK-84YX7J9KIRAjTn1HGw1jg2RQ9_vqcUvweXi2zjkMb_s6RswQSrG16PVPVHmRRzTs7LUwq9SmcJRF7ClL9hykuYsibsB3nKafM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2353934784</pqid></control><display><type>article</type><title>Elastoplastic Analysis of a Functionally Graded Material Beam Subjected to Uniformly Distributed Load</title><source>Oxford Journals Open Access Collection</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Cambridge University Press Journals Complete</source><creator>Xue, L. J. ; Bian, X. Y. ; Feng, J. J. ; Liu, J. N.</creator><creatorcontrib>Xue, L. J. ; Bian, X. Y. ; Feng, J. J. ; Liu, J. N.</creatorcontrib><description>The elastoplastic behavior of a Functionally Graded Material (FGM) simply supported beam consisting of elastic material A and elastoplastic material B under uniformly distributed load is investigated. A power function is used to describe the volume fractions of the constituent materials, and the average stress of the FGM beam is obtained by using the averaging method. This method can avoid the assumption of the varying properties of the whole material, and can consider the different Possion’s ratios of the different constituent materials. What’s more, only the elastoplastic material B in the FGM beam will yield, and the yield function is determined by the stress of material B only, rather than the average stress of the whole material. The method used in this work is more closer to the real material than the method by assuming the variation of the whole properties of FGM. The theoretical results show a good agreement with the finite element results, which indicates that the method provided in this work is valid. With this method, the variation of the elastic and plastic areas, the stress distribution on the cross section, variation of the curvature and neutral layer, and the residual stress distribution of the FGM beam are discussed through numerical results. This work can provide a new way for the design and in-depth investigation of FGM material.</description><identifier>ISSN: 1727-7191</identifier><identifier>EISSN: 1811-8216</identifier><identifier>DOI: 10.1017/jmech.2019.40</identifier><language>eng</language><publisher>Taipei: Oxford University Press</publisher><subject>Constituents ; Elastoplasticity ; Functionally gradient materials ; Load distribution (forces) ; Mathematical analysis ; Residual stress ; Stress concentration ; Stress distribution</subject><ispartof>Journal of mechanics, 2020-02, Vol.36 (1), p.73-85</ispartof><rights>Copyright © 2019 The Society of Theoretical and Applied Mechanics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c221t-e222fd03e018d9b7da9bcedde8c81b9bbb818fafe803f63b57991b882e81ddce3</cites><orcidid>0000-0002-8823-4703</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27915,27916</link.rule.ids></links><search><creatorcontrib>Xue, L. J.</creatorcontrib><creatorcontrib>Bian, X. Y.</creatorcontrib><creatorcontrib>Feng, J. J.</creatorcontrib><creatorcontrib>Liu, J. N.</creatorcontrib><title>Elastoplastic Analysis of a Functionally Graded Material Beam Subjected to Uniformly Distributed Load</title><title>Journal of mechanics</title><description>The elastoplastic behavior of a Functionally Graded Material (FGM) simply supported beam consisting of elastic material A and elastoplastic material B under uniformly distributed load is investigated. A power function is used to describe the volume fractions of the constituent materials, and the average stress of the FGM beam is obtained by using the averaging method. This method can avoid the assumption of the varying properties of the whole material, and can consider the different Possion’s ratios of the different constituent materials. What’s more, only the elastoplastic material B in the FGM beam will yield, and the yield function is determined by the stress of material B only, rather than the average stress of the whole material. The method used in this work is more closer to the real material than the method by assuming the variation of the whole properties of FGM. The theoretical results show a good agreement with the finite element results, which indicates that the method provided in this work is valid. With this method, the variation of the elastic and plastic areas, the stress distribution on the cross section, variation of the curvature and neutral layer, and the residual stress distribution of the FGM beam are discussed through numerical results. This work can provide a new way for the design and in-depth investigation of FGM material.</description><subject>Constituents</subject><subject>Elastoplasticity</subject><subject>Functionally gradient materials</subject><subject>Load distribution (forces)</subject><subject>Mathematical analysis</subject><subject>Residual stress</subject><subject>Stress concentration</subject><subject>Stress distribution</subject><issn>1727-7191</issn><issn>1811-8216</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNotkM1PAjEQxRujiQQ5em_iebHTLmx7RAQ0wXhQzk0_Yze7FNvugf_eRZ3DzOTNLy-Th9A9kDkQaB7b3pmvOSUg5jW5QhPgABWnsLwe94Y2VQMCbtEs55aMVQvC2WKC3KZTucTTpQeDV0fVnXPIOHqs8HY4mhLiqHVnvEvKOovfVHEpqA4_OdXjj0G3zpRRLxEfjsHH1I_sc8glBT1cDvuo7B268arLbvY_p-iw3XyuX6r9--51vdpXhlIolaOUekuYI8Ct0I1VQhtnreOGgxZaaw7cK-84YX7J9KIRAjTn1HGw1jg2RQ9_vqcUvweXi2zjkMb_s6RswQSrG16PVPVHmRRzTs7LUwq9SmcJRF7ClL9hykuYsibsB3nKafM</recordid><startdate>202002</startdate><enddate>202002</enddate><creator>Xue, L. J.</creator><creator>Bian, X. Y.</creator><creator>Feng, J. J.</creator><creator>Liu, J. N.</creator><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>M0C</scope><scope>M7S</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0002-8823-4703</orcidid></search><sort><creationdate>202002</creationdate><title>Elastoplastic Analysis of a Functionally Graded Material Beam Subjected to Uniformly Distributed Load</title><author>Xue, L. J. ; Bian, X. Y. ; Feng, J. J. ; Liu, J. N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c221t-e222fd03e018d9b7da9bcedde8c81b9bbb818fafe803f63b57991b882e81ddce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Constituents</topic><topic>Elastoplasticity</topic><topic>Functionally gradient materials</topic><topic>Load distribution (forces)</topic><topic>Mathematical analysis</topic><topic>Residual stress</topic><topic>Stress concentration</topic><topic>Stress distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xue, L. J.</creatorcontrib><creatorcontrib>Bian, X. Y.</creatorcontrib><creatorcontrib>Feng, J. J.</creatorcontrib><creatorcontrib>Liu, J. N.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Engineering Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Journal of mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xue, L. J.</au><au>Bian, X. Y.</au><au>Feng, J. J.</au><au>Liu, J. N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Elastoplastic Analysis of a Functionally Graded Material Beam Subjected to Uniformly Distributed Load</atitle><jtitle>Journal of mechanics</jtitle><date>2020-02</date><risdate>2020</risdate><volume>36</volume><issue>1</issue><spage>73</spage><epage>85</epage><pages>73-85</pages><issn>1727-7191</issn><eissn>1811-8216</eissn><abstract>The elastoplastic behavior of a Functionally Graded Material (FGM) simply supported beam consisting of elastic material A and elastoplastic material B under uniformly distributed load is investigated. A power function is used to describe the volume fractions of the constituent materials, and the average stress of the FGM beam is obtained by using the averaging method. This method can avoid the assumption of the varying properties of the whole material, and can consider the different Possion’s ratios of the different constituent materials. What’s more, only the elastoplastic material B in the FGM beam will yield, and the yield function is determined by the stress of material B only, rather than the average stress of the whole material. The method used in this work is more closer to the real material than the method by assuming the variation of the whole properties of FGM. The theoretical results show a good agreement with the finite element results, which indicates that the method provided in this work is valid. With this method, the variation of the elastic and plastic areas, the stress distribution on the cross section, variation of the curvature and neutral layer, and the residual stress distribution of the FGM beam are discussed through numerical results. This work can provide a new way for the design and in-depth investigation of FGM material.</abstract><cop>Taipei</cop><pub>Oxford University Press</pub><doi>10.1017/jmech.2019.40</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-8823-4703</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1727-7191 |
ispartof | Journal of mechanics, 2020-02, Vol.36 (1), p.73-85 |
issn | 1727-7191 1811-8216 |
language | eng |
recordid | cdi_proquest_journals_2353934784 |
source | Oxford Journals Open Access Collection; EZB-FREE-00999 freely available EZB journals; Cambridge University Press Journals Complete |
subjects | Constituents Elastoplasticity Functionally gradient materials Load distribution (forces) Mathematical analysis Residual stress Stress concentration Stress distribution |
title | Elastoplastic Analysis of a Functionally Graded Material Beam Subjected to Uniformly Distributed Load |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T00%3A08%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Elastoplastic%20Analysis%20of%20a%20Functionally%20Graded%20Material%20Beam%20Subjected%20to%20Uniformly%20Distributed%20Load&rft.jtitle=Journal%20of%20mechanics&rft.au=Xue,%20L.%20J.&rft.date=2020-02&rft.volume=36&rft.issue=1&rft.spage=73&rft.epage=85&rft.pages=73-85&rft.issn=1727-7191&rft.eissn=1811-8216&rft_id=info:doi/10.1017/jmech.2019.40&rft_dat=%3Cproquest_cross%3E2353934784%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2353934784&rft_id=info:pmid/&rfr_iscdi=true |