Self-Concordant Analysis of Frank-Wolfe Algorithms

Projection-free optimization via different variants of the Frank-Wolfe (FW), a.k.a. Conditional Gradient method has become one of the cornerstones in optimization for machine learning since in many cases the linear minimization oracle is much cheaper to implement than projections and some sparsity n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2020-06
Hauptverfasser: Dvurechensky, Pavel, Ostroukhov, Petr, Safin, Kamil, Shtern, Shimrit, Staudigl, Mathias
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Dvurechensky, Pavel
Ostroukhov, Petr
Safin, Kamil
Shtern, Shimrit
Staudigl, Mathias
description Projection-free optimization via different variants of the Frank-Wolfe (FW), a.k.a. Conditional Gradient method has become one of the cornerstones in optimization for machine learning since in many cases the linear minimization oracle is much cheaper to implement than projections and some sparsity needs to be preserved. In a number of applications, e.g. Poisson inverse problems or quantum state tomography, the loss is given by a self-concordant (SC) function having unbounded curvature, implying absence of theoretical guarantees for the existing FW methods. We use the theory of SC functions to provide a new adaptive step size for FW methods and prove global convergence rate O(1/k) after k iterations. If the problem admits a stronger local linear minimization oracle, we construct a novel FW method with linear convergence rate for SC functions.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2353847289</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2353847289</sourcerecordid><originalsourceid>FETCH-proquest_journals_23538472893</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQwCk7NSdN1zs9Lzi9KScwrUXDMS8ypLM4sVshPU3ArSszL1g3Pz0lLVXDMSc8vyizJyC3mYWBNS8wpTuWF0twMym6uIc4eugVF-YWlqcUl8Vn5pUVAY4rjjYxNjS1MzI0sLI2JUwUAwG0zrg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2353847289</pqid></control><display><type>article</type><title>Self-Concordant Analysis of Frank-Wolfe Algorithms</title><source>Free E- Journals</source><creator>Dvurechensky, Pavel ; Ostroukhov, Petr ; Safin, Kamil ; Shtern, Shimrit ; Staudigl, Mathias</creator><creatorcontrib>Dvurechensky, Pavel ; Ostroukhov, Petr ; Safin, Kamil ; Shtern, Shimrit ; Staudigl, Mathias</creatorcontrib><description>Projection-free optimization via different variants of the Frank-Wolfe (FW), a.k.a. Conditional Gradient method has become one of the cornerstones in optimization for machine learning since in many cases the linear minimization oracle is much cheaper to implement than projections and some sparsity needs to be preserved. In a number of applications, e.g. Poisson inverse problems or quantum state tomography, the loss is given by a self-concordant (SC) function having unbounded curvature, implying absence of theoretical guarantees for the existing FW methods. We use the theory of SC functions to provide a new adaptive step size for FW methods and prove global convergence rate O(1/k) after k iterations. If the problem admits a stronger local linear minimization oracle, we construct a novel FW method with linear convergence rate for SC functions.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Convergence ; Convexity ; Inverse problems ; Machine learning ; Optimization</subject><ispartof>arXiv.org, 2020-06</ispartof><rights>2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Dvurechensky, Pavel</creatorcontrib><creatorcontrib>Ostroukhov, Petr</creatorcontrib><creatorcontrib>Safin, Kamil</creatorcontrib><creatorcontrib>Shtern, Shimrit</creatorcontrib><creatorcontrib>Staudigl, Mathias</creatorcontrib><title>Self-Concordant Analysis of Frank-Wolfe Algorithms</title><title>arXiv.org</title><description>Projection-free optimization via different variants of the Frank-Wolfe (FW), a.k.a. Conditional Gradient method has become one of the cornerstones in optimization for machine learning since in many cases the linear minimization oracle is much cheaper to implement than projections and some sparsity needs to be preserved. In a number of applications, e.g. Poisson inverse problems or quantum state tomography, the loss is given by a self-concordant (SC) function having unbounded curvature, implying absence of theoretical guarantees for the existing FW methods. We use the theory of SC functions to provide a new adaptive step size for FW methods and prove global convergence rate O(1/k) after k iterations. If the problem admits a stronger local linear minimization oracle, we construct a novel FW method with linear convergence rate for SC functions.</description><subject>Algorithms</subject><subject>Convergence</subject><subject>Convexity</subject><subject>Inverse problems</subject><subject>Machine learning</subject><subject>Optimization</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQwCk7NSdN1zs9Lzi9KScwrUXDMS8ypLM4sVshPU3ArSszL1g3Pz0lLVXDMSc8vyizJyC3mYWBNS8wpTuWF0twMym6uIc4eugVF-YWlqcUl8Vn5pUVAY4rjjYxNjS1MzI0sLI2JUwUAwG0zrg</recordid><startdate>20200627</startdate><enddate>20200627</enddate><creator>Dvurechensky, Pavel</creator><creator>Ostroukhov, Petr</creator><creator>Safin, Kamil</creator><creator>Shtern, Shimrit</creator><creator>Staudigl, Mathias</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200627</creationdate><title>Self-Concordant Analysis of Frank-Wolfe Algorithms</title><author>Dvurechensky, Pavel ; Ostroukhov, Petr ; Safin, Kamil ; Shtern, Shimrit ; Staudigl, Mathias</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_23538472893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Convergence</topic><topic>Convexity</topic><topic>Inverse problems</topic><topic>Machine learning</topic><topic>Optimization</topic><toplevel>online_resources</toplevel><creatorcontrib>Dvurechensky, Pavel</creatorcontrib><creatorcontrib>Ostroukhov, Petr</creatorcontrib><creatorcontrib>Safin, Kamil</creatorcontrib><creatorcontrib>Shtern, Shimrit</creatorcontrib><creatorcontrib>Staudigl, Mathias</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dvurechensky, Pavel</au><au>Ostroukhov, Petr</au><au>Safin, Kamil</au><au>Shtern, Shimrit</au><au>Staudigl, Mathias</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Self-Concordant Analysis of Frank-Wolfe Algorithms</atitle><jtitle>arXiv.org</jtitle><date>2020-06-27</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>Projection-free optimization via different variants of the Frank-Wolfe (FW), a.k.a. Conditional Gradient method has become one of the cornerstones in optimization for machine learning since in many cases the linear minimization oracle is much cheaper to implement than projections and some sparsity needs to be preserved. In a number of applications, e.g. Poisson inverse problems or quantum state tomography, the loss is given by a self-concordant (SC) function having unbounded curvature, implying absence of theoretical guarantees for the existing FW methods. We use the theory of SC functions to provide a new adaptive step size for FW methods and prove global convergence rate O(1/k) after k iterations. If the problem admits a stronger local linear minimization oracle, we construct a novel FW method with linear convergence rate for SC functions.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2020-06
issn 2331-8422
language eng
recordid cdi_proquest_journals_2353847289
source Free E- Journals
subjects Algorithms
Convergence
Convexity
Inverse problems
Machine learning
Optimization
title Self-Concordant Analysis of Frank-Wolfe Algorithms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T14%3A14%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Self-Concordant%20Analysis%20of%20Frank-Wolfe%20Algorithms&rft.jtitle=arXiv.org&rft.au=Dvurechensky,%20Pavel&rft.date=2020-06-27&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2353847289%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2353847289&rft_id=info:pmid/&rfr_iscdi=true