Self-Concordant Analysis of Frank-Wolfe Algorithms
Projection-free optimization via different variants of the Frank-Wolfe (FW), a.k.a. Conditional Gradient method has become one of the cornerstones in optimization for machine learning since in many cases the linear minimization oracle is much cheaper to implement than projections and some sparsity n...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2020-06 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Dvurechensky, Pavel Ostroukhov, Petr Safin, Kamil Shtern, Shimrit Staudigl, Mathias |
description | Projection-free optimization via different variants of the Frank-Wolfe (FW), a.k.a. Conditional Gradient method has become one of the cornerstones in optimization for machine learning since in many cases the linear minimization oracle is much cheaper to implement than projections and some sparsity needs to be preserved. In a number of applications, e.g. Poisson inverse problems or quantum state tomography, the loss is given by a self-concordant (SC) function having unbounded curvature, implying absence of theoretical guarantees for the existing FW methods. We use the theory of SC functions to provide a new adaptive step size for FW methods and prove global convergence rate O(1/k) after k iterations. If the problem admits a stronger local linear minimization oracle, we construct a novel FW method with linear convergence rate for SC functions. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2353847289</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2353847289</sourcerecordid><originalsourceid>FETCH-proquest_journals_23538472893</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQwCk7NSdN1zs9Lzi9KScwrUXDMS8ypLM4sVshPU3ArSszL1g3Pz0lLVXDMSc8vyizJyC3mYWBNS8wpTuWF0twMym6uIc4eugVF-YWlqcUl8Vn5pUVAY4rjjYxNjS1MzI0sLI2JUwUAwG0zrg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2353847289</pqid></control><display><type>article</type><title>Self-Concordant Analysis of Frank-Wolfe Algorithms</title><source>Free E- Journals</source><creator>Dvurechensky, Pavel ; Ostroukhov, Petr ; Safin, Kamil ; Shtern, Shimrit ; Staudigl, Mathias</creator><creatorcontrib>Dvurechensky, Pavel ; Ostroukhov, Petr ; Safin, Kamil ; Shtern, Shimrit ; Staudigl, Mathias</creatorcontrib><description>Projection-free optimization via different variants of the Frank-Wolfe (FW), a.k.a. Conditional Gradient method has become one of the cornerstones in optimization for machine learning since in many cases the linear minimization oracle is much cheaper to implement than projections and some sparsity needs to be preserved. In a number of applications, e.g. Poisson inverse problems or quantum state tomography, the loss is given by a self-concordant (SC) function having unbounded curvature, implying absence of theoretical guarantees for the existing FW methods. We use the theory of SC functions to provide a new adaptive step size for FW methods and prove global convergence rate O(1/k) after k iterations. If the problem admits a stronger local linear minimization oracle, we construct a novel FW method with linear convergence rate for SC functions.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Convergence ; Convexity ; Inverse problems ; Machine learning ; Optimization</subject><ispartof>arXiv.org, 2020-06</ispartof><rights>2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Dvurechensky, Pavel</creatorcontrib><creatorcontrib>Ostroukhov, Petr</creatorcontrib><creatorcontrib>Safin, Kamil</creatorcontrib><creatorcontrib>Shtern, Shimrit</creatorcontrib><creatorcontrib>Staudigl, Mathias</creatorcontrib><title>Self-Concordant Analysis of Frank-Wolfe Algorithms</title><title>arXiv.org</title><description>Projection-free optimization via different variants of the Frank-Wolfe (FW), a.k.a. Conditional Gradient method has become one of the cornerstones in optimization for machine learning since in many cases the linear minimization oracle is much cheaper to implement than projections and some sparsity needs to be preserved. In a number of applications, e.g. Poisson inverse problems or quantum state tomography, the loss is given by a self-concordant (SC) function having unbounded curvature, implying absence of theoretical guarantees for the existing FW methods. We use the theory of SC functions to provide a new adaptive step size for FW methods and prove global convergence rate O(1/k) after k iterations. If the problem admits a stronger local linear minimization oracle, we construct a novel FW method with linear convergence rate for SC functions.</description><subject>Algorithms</subject><subject>Convergence</subject><subject>Convexity</subject><subject>Inverse problems</subject><subject>Machine learning</subject><subject>Optimization</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQwCk7NSdN1zs9Lzi9KScwrUXDMS8ypLM4sVshPU3ArSszL1g3Pz0lLVXDMSc8vyizJyC3mYWBNS8wpTuWF0twMym6uIc4eugVF-YWlqcUl8Vn5pUVAY4rjjYxNjS1MzI0sLI2JUwUAwG0zrg</recordid><startdate>20200627</startdate><enddate>20200627</enddate><creator>Dvurechensky, Pavel</creator><creator>Ostroukhov, Petr</creator><creator>Safin, Kamil</creator><creator>Shtern, Shimrit</creator><creator>Staudigl, Mathias</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200627</creationdate><title>Self-Concordant Analysis of Frank-Wolfe Algorithms</title><author>Dvurechensky, Pavel ; Ostroukhov, Petr ; Safin, Kamil ; Shtern, Shimrit ; Staudigl, Mathias</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_23538472893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Convergence</topic><topic>Convexity</topic><topic>Inverse problems</topic><topic>Machine learning</topic><topic>Optimization</topic><toplevel>online_resources</toplevel><creatorcontrib>Dvurechensky, Pavel</creatorcontrib><creatorcontrib>Ostroukhov, Petr</creatorcontrib><creatorcontrib>Safin, Kamil</creatorcontrib><creatorcontrib>Shtern, Shimrit</creatorcontrib><creatorcontrib>Staudigl, Mathias</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dvurechensky, Pavel</au><au>Ostroukhov, Petr</au><au>Safin, Kamil</au><au>Shtern, Shimrit</au><au>Staudigl, Mathias</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Self-Concordant Analysis of Frank-Wolfe Algorithms</atitle><jtitle>arXiv.org</jtitle><date>2020-06-27</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>Projection-free optimization via different variants of the Frank-Wolfe (FW), a.k.a. Conditional Gradient method has become one of the cornerstones in optimization for machine learning since in many cases the linear minimization oracle is much cheaper to implement than projections and some sparsity needs to be preserved. In a number of applications, e.g. Poisson inverse problems or quantum state tomography, the loss is given by a self-concordant (SC) function having unbounded curvature, implying absence of theoretical guarantees for the existing FW methods. We use the theory of SC functions to provide a new adaptive step size for FW methods and prove global convergence rate O(1/k) after k iterations. If the problem admits a stronger local linear minimization oracle, we construct a novel FW method with linear convergence rate for SC functions.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2020-06 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2353847289 |
source | Free E- Journals |
subjects | Algorithms Convergence Convexity Inverse problems Machine learning Optimization |
title | Self-Concordant Analysis of Frank-Wolfe Algorithms |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T14%3A14%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Self-Concordant%20Analysis%20of%20Frank-Wolfe%20Algorithms&rft.jtitle=arXiv.org&rft.au=Dvurechensky,%20Pavel&rft.date=2020-06-27&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2353847289%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2353847289&rft_id=info:pmid/&rfr_iscdi=true |