A semiconductor topological photonic ring resonator
Unidirectional photonic edge states arise at the interface between two topologically distinct photonic crystals. Here, we demonstrate a micrometer-scale GaAs photonic ring resonator, created using a spin Hall-type topological photonic crystal waveguide. Embedded InGaAs quantum dots are used to probe...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2020-02, Vol.116 (6) |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 6 |
container_start_page | |
container_title | Applied physics letters |
container_volume | 116 |
creator | Jalali Mehrabad, M. Foster, A. P. Dost, R. Clarke, E. Patil, P. K. Farrer, I. Heffernan, J. Skolnick, M. S. Wilson, L. R. |
description | Unidirectional photonic edge states arise at the interface between two topologically distinct photonic crystals. Here, we demonstrate a micrometer-scale GaAs photonic ring resonator, created using a spin Hall-type topological photonic crystal waveguide. Embedded InGaAs quantum dots are used to probe the mode structure of the device. We map the spatial profile of the resonator modes and demonstrate the control of the mode confinement through tuning of the photonic crystal lattice parameters. The intrinsic chirality of the edge states makes them of interest for applications in integrated quantum photonics, and the resonator represents an important building block toward the development of such devices with embedded quantum emitters. |
doi_str_mv | 10.1063/1.5131846 |
format | Article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2353779384</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2353779384</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-782a57447e55259265a3fbceefe14de5e406dfa14c8b13a67fae5205fbba71c73</originalsourceid><addsrcrecordid>eNqd0M1KxDAUBeAgCtbRhW9QcKXQMbc3adrlMPgHA250HdI0GTN0mpqkgm9vZQbcuzoc-LgXDiHXQJdAK7yHJQeEmlUnJAMqRIEA9SnJKKVYVA2Hc3IR426uvETMCK7yaPZO-6GbdPIhT370vd86rfp8_PDJD07nwQ3bPJjoBzWbS3JmVR_N1TEX5P3x4W39XGxen17Wq02hscFUiLpUXDAmDOclb8qKK7StNsYaYJ3hhtGqswqYrltAVQmrDC8pt22rBGiBC3JzuDsG_zmZmOTOT2GYX8oSOQrRYM1mdXtQOvgYg7FyDG6vwrcEKn83kSCPm8z27mCjdkkl54f_4S8f_qAcO4s_vKBvSQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2353779384</pqid></control><display><type>article</type><title>A semiconductor topological photonic ring resonator</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Jalali Mehrabad, M. ; Foster, A. P. ; Dost, R. ; Clarke, E. ; Patil, P. K. ; Farrer, I. ; Heffernan, J. ; Skolnick, M. S. ; Wilson, L. R.</creator><creatorcontrib>Jalali Mehrabad, M. ; Foster, A. P. ; Dost, R. ; Clarke, E. ; Patil, P. K. ; Farrer, I. ; Heffernan, J. ; Skolnick, M. S. ; Wilson, L. R.</creatorcontrib><description>Unidirectional photonic edge states arise at the interface between two topologically distinct photonic crystals. Here, we demonstrate a micrometer-scale GaAs photonic ring resonator, created using a spin Hall-type topological photonic crystal waveguide. Embedded InGaAs quantum dots are used to probe the mode structure of the device. We map the spatial profile of the resonator modes and demonstrate the control of the mode confinement through tuning of the photonic crystal lattice parameters. The intrinsic chirality of the edge states makes them of interest for applications in integrated quantum photonics, and the resonator represents an important building block toward the development of such devices with embedded quantum emitters.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.5131846</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Chirality ; Crystal lattices ; Emitters ; Indium gallium arsenides ; Lattice parameters ; Lattice vibration ; Photonic crystals ; Quantum dots ; Resonators ; Rings (mathematics) ; Topology</subject><ispartof>Applied physics letters, 2020-02, Vol.116 (6)</ispartof><rights>Author(s)</rights><rights>2020 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-782a57447e55259265a3fbceefe14de5e406dfa14c8b13a67fae5205fbba71c73</citedby><cites>FETCH-LOGICAL-c393t-782a57447e55259265a3fbceefe14de5e406dfa14c8b13a67fae5205fbba71c73</cites><orcidid>0000-0002-8287-0282 ; 0000-0002-3972-8344 ; 0000-0002-7528-3207 ; 0000-0002-9809-9998 ; 0000-0002-5817-0008 ; 0000-0002-3033-4306 ; 0000-0002-8578-0389</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/1.5131846$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,4510,27923,27924,76155</link.rule.ids></links><search><creatorcontrib>Jalali Mehrabad, M.</creatorcontrib><creatorcontrib>Foster, A. P.</creatorcontrib><creatorcontrib>Dost, R.</creatorcontrib><creatorcontrib>Clarke, E.</creatorcontrib><creatorcontrib>Patil, P. K.</creatorcontrib><creatorcontrib>Farrer, I.</creatorcontrib><creatorcontrib>Heffernan, J.</creatorcontrib><creatorcontrib>Skolnick, M. S.</creatorcontrib><creatorcontrib>Wilson, L. R.</creatorcontrib><title>A semiconductor topological photonic ring resonator</title><title>Applied physics letters</title><description>Unidirectional photonic edge states arise at the interface between two topologically distinct photonic crystals. Here, we demonstrate a micrometer-scale GaAs photonic ring resonator, created using a spin Hall-type topological photonic crystal waveguide. Embedded InGaAs quantum dots are used to probe the mode structure of the device. We map the spatial profile of the resonator modes and demonstrate the control of the mode confinement through tuning of the photonic crystal lattice parameters. The intrinsic chirality of the edge states makes them of interest for applications in integrated quantum photonics, and the resonator represents an important building block toward the development of such devices with embedded quantum emitters.</description><subject>Applied physics</subject><subject>Chirality</subject><subject>Crystal lattices</subject><subject>Emitters</subject><subject>Indium gallium arsenides</subject><subject>Lattice parameters</subject><subject>Lattice vibration</subject><subject>Photonic crystals</subject><subject>Quantum dots</subject><subject>Resonators</subject><subject>Rings (mathematics)</subject><subject>Topology</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqd0M1KxDAUBeAgCtbRhW9QcKXQMbc3adrlMPgHA250HdI0GTN0mpqkgm9vZQbcuzoc-LgXDiHXQJdAK7yHJQeEmlUnJAMqRIEA9SnJKKVYVA2Hc3IR426uvETMCK7yaPZO-6GbdPIhT370vd86rfp8_PDJD07nwQ3bPJjoBzWbS3JmVR_N1TEX5P3x4W39XGxen17Wq02hscFUiLpUXDAmDOclb8qKK7StNsYaYJ3hhtGqswqYrltAVQmrDC8pt22rBGiBC3JzuDsG_zmZmOTOT2GYX8oSOQrRYM1mdXtQOvgYg7FyDG6vwrcEKn83kSCPm8z27mCjdkkl54f_4S8f_qAcO4s_vKBvSQ</recordid><startdate>20200210</startdate><enddate>20200210</enddate><creator>Jalali Mehrabad, M.</creator><creator>Foster, A. P.</creator><creator>Dost, R.</creator><creator>Clarke, E.</creator><creator>Patil, P. K.</creator><creator>Farrer, I.</creator><creator>Heffernan, J.</creator><creator>Skolnick, M. S.</creator><creator>Wilson, L. R.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-8287-0282</orcidid><orcidid>https://orcid.org/0000-0002-3972-8344</orcidid><orcidid>https://orcid.org/0000-0002-7528-3207</orcidid><orcidid>https://orcid.org/0000-0002-9809-9998</orcidid><orcidid>https://orcid.org/0000-0002-5817-0008</orcidid><orcidid>https://orcid.org/0000-0002-3033-4306</orcidid><orcidid>https://orcid.org/0000-0002-8578-0389</orcidid></search><sort><creationdate>20200210</creationdate><title>A semiconductor topological photonic ring resonator</title><author>Jalali Mehrabad, M. ; Foster, A. P. ; Dost, R. ; Clarke, E. ; Patil, P. K. ; Farrer, I. ; Heffernan, J. ; Skolnick, M. S. ; Wilson, L. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-782a57447e55259265a3fbceefe14de5e406dfa14c8b13a67fae5205fbba71c73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Applied physics</topic><topic>Chirality</topic><topic>Crystal lattices</topic><topic>Emitters</topic><topic>Indium gallium arsenides</topic><topic>Lattice parameters</topic><topic>Lattice vibration</topic><topic>Photonic crystals</topic><topic>Quantum dots</topic><topic>Resonators</topic><topic>Rings (mathematics)</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jalali Mehrabad, M.</creatorcontrib><creatorcontrib>Foster, A. P.</creatorcontrib><creatorcontrib>Dost, R.</creatorcontrib><creatorcontrib>Clarke, E.</creatorcontrib><creatorcontrib>Patil, P. K.</creatorcontrib><creatorcontrib>Farrer, I.</creatorcontrib><creatorcontrib>Heffernan, J.</creatorcontrib><creatorcontrib>Skolnick, M. S.</creatorcontrib><creatorcontrib>Wilson, L. R.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jalali Mehrabad, M.</au><au>Foster, A. P.</au><au>Dost, R.</au><au>Clarke, E.</au><au>Patil, P. K.</au><au>Farrer, I.</au><au>Heffernan, J.</au><au>Skolnick, M. S.</au><au>Wilson, L. R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A semiconductor topological photonic ring resonator</atitle><jtitle>Applied physics letters</jtitle><date>2020-02-10</date><risdate>2020</risdate><volume>116</volume><issue>6</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>Unidirectional photonic edge states arise at the interface between two topologically distinct photonic crystals. Here, we demonstrate a micrometer-scale GaAs photonic ring resonator, created using a spin Hall-type topological photonic crystal waveguide. Embedded InGaAs quantum dots are used to probe the mode structure of the device. We map the spatial profile of the resonator modes and demonstrate the control of the mode confinement through tuning of the photonic crystal lattice parameters. The intrinsic chirality of the edge states makes them of interest for applications in integrated quantum photonics, and the resonator represents an important building block toward the development of such devices with embedded quantum emitters.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5131846</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-8287-0282</orcidid><orcidid>https://orcid.org/0000-0002-3972-8344</orcidid><orcidid>https://orcid.org/0000-0002-7528-3207</orcidid><orcidid>https://orcid.org/0000-0002-9809-9998</orcidid><orcidid>https://orcid.org/0000-0002-5817-0008</orcidid><orcidid>https://orcid.org/0000-0002-3033-4306</orcidid><orcidid>https://orcid.org/0000-0002-8578-0389</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-6951 |
ispartof | Applied physics letters, 2020-02, Vol.116 (6) |
issn | 0003-6951 1077-3118 |
language | eng |
recordid | cdi_proquest_journals_2353779384 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Applied physics Chirality Crystal lattices Emitters Indium gallium arsenides Lattice parameters Lattice vibration Photonic crystals Quantum dots Resonators Rings (mathematics) Topology |
title | A semiconductor topological photonic ring resonator |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T10%3A20%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20semiconductor%20topological%20photonic%20ring%20resonator&rft.jtitle=Applied%20physics%20letters&rft.au=Jalali%20Mehrabad,%20M.&rft.date=2020-02-10&rft.volume=116&rft.issue=6&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/1.5131846&rft_dat=%3Cproquest_scita%3E2353779384%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2353779384&rft_id=info:pmid/&rfr_iscdi=true |