Biocompatible nano-ripples structured surfaces induced by femtosecond laser to rebel bacterial colonization and biofilm formation
[Display omitted] •Composite structures consisting of nano-ripples and grooves are fabricated.•The adhesion of E. coli was limited on nano-ripples and micro-grooves.•Deep grooves are conducive to the deformation and rupture of bacteria.•All types of nano-ripples surfaces present good biocompatibilit...
Gespeichert in:
Veröffentlicht in: | Optics and laser technology 2020-04, Vol.124, p.105973, Article 105973 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 105973 |
container_title | Optics and laser technology |
container_volume | 124 |
creator | Luo, Xiao Yao, Shenglian Zhang, Hongjun Cai, Mingyong Liu, Weijian Pan, Rui Chen, Changhao Wang, Xiumei Wang, Luning Zhong, Minlin |
description | [Display omitted]
•Composite structures consisting of nano-ripples and grooves are fabricated.•The adhesion of E. coli was limited on nano-ripples and micro-grooves.•Deep grooves are conducive to the deformation and rupture of bacteria.•All types of nano-ripples surfaces present good biocompatibility.
Structured surfaces with both anti-bacterial capability and biocompatibility are essential to medical devices including orthopedic implants. Over the past few years, numerous studies indicated that nanostructures such as nanotubes, nanowires, nano-pillars and nano-ripples were capable of repelling or killing bacteria, while the morphology and dimensions of the nanostructures showed essential influence on the adhesion and proliferation of cells. The long-term functionalities of implants depend on their reliable anti-bacterial performance at the same time enhanced biocompatibility. However, researches covering both these two aspects are still very limited. In this paper, we applied one-step femtosecond laser irradiation to produce three types of nano-ripples, and to investigate their anti-bacterial behavior and their biocompatibility. Our results demonstrate that all the three types of nano-ripples are capable of preventing bacterial colonization and biofilm formation, with their anti-bacteria rates towards E. coli respectively 43%, 49% and 56%. Meanwhile, the femtosecond laser induced nano-ripples exhibit good rat mesenchymal stem cells (MSCs) proliferation capacity and spreading performance, and the nano-ripples affect significantly the orientation of MSCs. The results offer valuable information and potentials on the anti-bacteria and biocompatibility of nanostructures. |
doi_str_mv | 10.1016/j.optlastec.2019.105973 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2353610932</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0030399219310059</els_id><sourcerecordid>2353610932</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-22c7ed31b63af90e0fc97f31f8c960ec2a407b6ad5ae6286c528f9bc4cb7e6423</originalsourceid><addsrcrecordid>eNqFkMtq3DAUhkVJIJM0zxBB1p7oYsuj5WRILxDIJl0L6fgINNiWK8mFdNc3r6YTsu3qwM9_4XyE3HG25Yyrh-M2LmW0uSBsBeO6qp3u5Sey4bteN6JruwuyYUyyRmotrsh1zkfGWKs6uSF_HkOEOC22BDcine0cmxSWZcRMc0krlDXhQPOavIWqhXlYoQrujXqcSswIcR5o3cdES6QJHY7UWSiYgh0pxDHO4XetjzO11elC9GGcqI9p-qd-Jpfejhlv3-8N-fHl6fXwrXl--fr9sH9uQLayNEJAj4PkTknrNUPmQfdecr8DrRiCsC3rnbJDZ1GJnYJO7Lx20ILrUbVC3pD7c--S4s8VczHHuKa5ThohO6k40_Lk6s8uSDHnhN4sKUw2vRnOzIm3OZoP3ubE25x51-T-nMT6xK-AyWQIOFdYISEUM8Tw346_RrGRsQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2353610932</pqid></control><display><type>article</type><title>Biocompatible nano-ripples structured surfaces induced by femtosecond laser to rebel bacterial colonization and biofilm formation</title><source>Elsevier ScienceDirect Journals</source><creator>Luo, Xiao ; Yao, Shenglian ; Zhang, Hongjun ; Cai, Mingyong ; Liu, Weijian ; Pan, Rui ; Chen, Changhao ; Wang, Xiumei ; Wang, Luning ; Zhong, Minlin</creator><creatorcontrib>Luo, Xiao ; Yao, Shenglian ; Zhang, Hongjun ; Cai, Mingyong ; Liu, Weijian ; Pan, Rui ; Chen, Changhao ; Wang, Xiumei ; Wang, Luning ; Zhong, Minlin</creatorcontrib><description>[Display omitted]
•Composite structures consisting of nano-ripples and grooves are fabricated.•The adhesion of E. coli was limited on nano-ripples and micro-grooves.•Deep grooves are conducive to the deformation and rupture of bacteria.•All types of nano-ripples surfaces present good biocompatibility.
Structured surfaces with both anti-bacterial capability and biocompatibility are essential to medical devices including orthopedic implants. Over the past few years, numerous studies indicated that nanostructures such as nanotubes, nanowires, nano-pillars and nano-ripples were capable of repelling or killing bacteria, while the morphology and dimensions of the nanostructures showed essential influence on the adhesion and proliferation of cells. The long-term functionalities of implants depend on their reliable anti-bacterial performance at the same time enhanced biocompatibility. However, researches covering both these two aspects are still very limited. In this paper, we applied one-step femtosecond laser irradiation to produce three types of nano-ripples, and to investigate their anti-bacterial behavior and their biocompatibility. Our results demonstrate that all the three types of nano-ripples are capable of preventing bacterial colonization and biofilm formation, with their anti-bacteria rates towards E. coli respectively 43%, 49% and 56%. Meanwhile, the femtosecond laser induced nano-ripples exhibit good rat mesenchymal stem cells (MSCs) proliferation capacity and spreading performance, and the nano-ripples affect significantly the orientation of MSCs. The results offer valuable information and potentials on the anti-bacteria and biocompatibility of nanostructures.</description><identifier>ISSN: 0030-3992</identifier><identifier>EISSN: 1879-2545</identifier><identifier>DOI: 10.1016/j.optlastec.2019.105973</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Anti-bacteria ; Antiinfectives and antibacterials ; Bacteria ; Biocompatibility ; Biofilms ; E coli ; Femtosecond laser ; Laser surface modification ; Lasers ; Medical devices ; Medical electronics ; Morphology ; Nano-ripples ; Nanostructure ; Nanowires ; Orthopaedic implants ; Orthopedics ; Ripples ; Stem cells ; Surgical implants</subject><ispartof>Optics and laser technology, 2020-04, Vol.124, p.105973, Article 105973</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright Elsevier BV Apr 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-22c7ed31b63af90e0fc97f31f8c960ec2a407b6ad5ae6286c528f9bc4cb7e6423</citedby><cites>FETCH-LOGICAL-c343t-22c7ed31b63af90e0fc97f31f8c960ec2a407b6ad5ae6286c528f9bc4cb7e6423</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.optlastec.2019.105973$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids></links><search><creatorcontrib>Luo, Xiao</creatorcontrib><creatorcontrib>Yao, Shenglian</creatorcontrib><creatorcontrib>Zhang, Hongjun</creatorcontrib><creatorcontrib>Cai, Mingyong</creatorcontrib><creatorcontrib>Liu, Weijian</creatorcontrib><creatorcontrib>Pan, Rui</creatorcontrib><creatorcontrib>Chen, Changhao</creatorcontrib><creatorcontrib>Wang, Xiumei</creatorcontrib><creatorcontrib>Wang, Luning</creatorcontrib><creatorcontrib>Zhong, Minlin</creatorcontrib><title>Biocompatible nano-ripples structured surfaces induced by femtosecond laser to rebel bacterial colonization and biofilm formation</title><title>Optics and laser technology</title><description>[Display omitted]
•Composite structures consisting of nano-ripples and grooves are fabricated.•The adhesion of E. coli was limited on nano-ripples and micro-grooves.•Deep grooves are conducive to the deformation and rupture of bacteria.•All types of nano-ripples surfaces present good biocompatibility.
Structured surfaces with both anti-bacterial capability and biocompatibility are essential to medical devices including orthopedic implants. Over the past few years, numerous studies indicated that nanostructures such as nanotubes, nanowires, nano-pillars and nano-ripples were capable of repelling or killing bacteria, while the morphology and dimensions of the nanostructures showed essential influence on the adhesion and proliferation of cells. The long-term functionalities of implants depend on their reliable anti-bacterial performance at the same time enhanced biocompatibility. However, researches covering both these two aspects are still very limited. In this paper, we applied one-step femtosecond laser irradiation to produce three types of nano-ripples, and to investigate their anti-bacterial behavior and their biocompatibility. Our results demonstrate that all the three types of nano-ripples are capable of preventing bacterial colonization and biofilm formation, with their anti-bacteria rates towards E. coli respectively 43%, 49% and 56%. Meanwhile, the femtosecond laser induced nano-ripples exhibit good rat mesenchymal stem cells (MSCs) proliferation capacity and spreading performance, and the nano-ripples affect significantly the orientation of MSCs. The results offer valuable information and potentials on the anti-bacteria and biocompatibility of nanostructures.</description><subject>Anti-bacteria</subject><subject>Antiinfectives and antibacterials</subject><subject>Bacteria</subject><subject>Biocompatibility</subject><subject>Biofilms</subject><subject>E coli</subject><subject>Femtosecond laser</subject><subject>Laser surface modification</subject><subject>Lasers</subject><subject>Medical devices</subject><subject>Medical electronics</subject><subject>Morphology</subject><subject>Nano-ripples</subject><subject>Nanostructure</subject><subject>Nanowires</subject><subject>Orthopaedic implants</subject><subject>Orthopedics</subject><subject>Ripples</subject><subject>Stem cells</subject><subject>Surgical implants</subject><issn>0030-3992</issn><issn>1879-2545</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkMtq3DAUhkVJIJM0zxBB1p7oYsuj5WRILxDIJl0L6fgINNiWK8mFdNc3r6YTsu3qwM9_4XyE3HG25Yyrh-M2LmW0uSBsBeO6qp3u5Sey4bteN6JruwuyYUyyRmotrsh1zkfGWKs6uSF_HkOEOC22BDcine0cmxSWZcRMc0krlDXhQPOavIWqhXlYoQrujXqcSswIcR5o3cdES6QJHY7UWSiYgh0pxDHO4XetjzO11elC9GGcqI9p-qd-Jpfejhlv3-8N-fHl6fXwrXl--fr9sH9uQLayNEJAj4PkTknrNUPmQfdecr8DrRiCsC3rnbJDZ1GJnYJO7Lx20ILrUbVC3pD7c--S4s8VczHHuKa5ThohO6k40_Lk6s8uSDHnhN4sKUw2vRnOzIm3OZoP3ubE25x51-T-nMT6xK-AyWQIOFdYISEUM8Tw346_RrGRsQ</recordid><startdate>202004</startdate><enddate>202004</enddate><creator>Luo, Xiao</creator><creator>Yao, Shenglian</creator><creator>Zhang, Hongjun</creator><creator>Cai, Mingyong</creator><creator>Liu, Weijian</creator><creator>Pan, Rui</creator><creator>Chen, Changhao</creator><creator>Wang, Xiumei</creator><creator>Wang, Luning</creator><creator>Zhong, Minlin</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>202004</creationdate><title>Biocompatible nano-ripples structured surfaces induced by femtosecond laser to rebel bacterial colonization and biofilm formation</title><author>Luo, Xiao ; Yao, Shenglian ; Zhang, Hongjun ; Cai, Mingyong ; Liu, Weijian ; Pan, Rui ; Chen, Changhao ; Wang, Xiumei ; Wang, Luning ; Zhong, Minlin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-22c7ed31b63af90e0fc97f31f8c960ec2a407b6ad5ae6286c528f9bc4cb7e6423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Anti-bacteria</topic><topic>Antiinfectives and antibacterials</topic><topic>Bacteria</topic><topic>Biocompatibility</topic><topic>Biofilms</topic><topic>E coli</topic><topic>Femtosecond laser</topic><topic>Laser surface modification</topic><topic>Lasers</topic><topic>Medical devices</topic><topic>Medical electronics</topic><topic>Morphology</topic><topic>Nano-ripples</topic><topic>Nanostructure</topic><topic>Nanowires</topic><topic>Orthopaedic implants</topic><topic>Orthopedics</topic><topic>Ripples</topic><topic>Stem cells</topic><topic>Surgical implants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luo, Xiao</creatorcontrib><creatorcontrib>Yao, Shenglian</creatorcontrib><creatorcontrib>Zhang, Hongjun</creatorcontrib><creatorcontrib>Cai, Mingyong</creatorcontrib><creatorcontrib>Liu, Weijian</creatorcontrib><creatorcontrib>Pan, Rui</creatorcontrib><creatorcontrib>Chen, Changhao</creatorcontrib><creatorcontrib>Wang, Xiumei</creatorcontrib><creatorcontrib>Wang, Luning</creatorcontrib><creatorcontrib>Zhong, Minlin</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Optics and laser technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Luo, Xiao</au><au>Yao, Shenglian</au><au>Zhang, Hongjun</au><au>Cai, Mingyong</au><au>Liu, Weijian</au><au>Pan, Rui</au><au>Chen, Changhao</au><au>Wang, Xiumei</au><au>Wang, Luning</au><au>Zhong, Minlin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biocompatible nano-ripples structured surfaces induced by femtosecond laser to rebel bacterial colonization and biofilm formation</atitle><jtitle>Optics and laser technology</jtitle><date>2020-04</date><risdate>2020</risdate><volume>124</volume><spage>105973</spage><pages>105973-</pages><artnum>105973</artnum><issn>0030-3992</issn><eissn>1879-2545</eissn><abstract>[Display omitted]
•Composite structures consisting of nano-ripples and grooves are fabricated.•The adhesion of E. coli was limited on nano-ripples and micro-grooves.•Deep grooves are conducive to the deformation and rupture of bacteria.•All types of nano-ripples surfaces present good biocompatibility.
Structured surfaces with both anti-bacterial capability and biocompatibility are essential to medical devices including orthopedic implants. Over the past few years, numerous studies indicated that nanostructures such as nanotubes, nanowires, nano-pillars and nano-ripples were capable of repelling or killing bacteria, while the morphology and dimensions of the nanostructures showed essential influence on the adhesion and proliferation of cells. The long-term functionalities of implants depend on their reliable anti-bacterial performance at the same time enhanced biocompatibility. However, researches covering both these two aspects are still very limited. In this paper, we applied one-step femtosecond laser irradiation to produce three types of nano-ripples, and to investigate their anti-bacterial behavior and their biocompatibility. Our results demonstrate that all the three types of nano-ripples are capable of preventing bacterial colonization and biofilm formation, with their anti-bacteria rates towards E. coli respectively 43%, 49% and 56%. Meanwhile, the femtosecond laser induced nano-ripples exhibit good rat mesenchymal stem cells (MSCs) proliferation capacity and spreading performance, and the nano-ripples affect significantly the orientation of MSCs. The results offer valuable information and potentials on the anti-bacteria and biocompatibility of nanostructures.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.optlastec.2019.105973</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0030-3992 |
ispartof | Optics and laser technology, 2020-04, Vol.124, p.105973, Article 105973 |
issn | 0030-3992 1879-2545 |
language | eng |
recordid | cdi_proquest_journals_2353610932 |
source | Elsevier ScienceDirect Journals |
subjects | Anti-bacteria Antiinfectives and antibacterials Bacteria Biocompatibility Biofilms E coli Femtosecond laser Laser surface modification Lasers Medical devices Medical electronics Morphology Nano-ripples Nanostructure Nanowires Orthopaedic implants Orthopedics Ripples Stem cells Surgical implants |
title | Biocompatible nano-ripples structured surfaces induced by femtosecond laser to rebel bacterial colonization and biofilm formation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T05%3A52%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biocompatible%20nano-ripples%20structured%20surfaces%20induced%20by%20femtosecond%20laser%20to%20rebel%20bacterial%20colonization%20and%20biofilm%20formation&rft.jtitle=Optics%20and%20laser%20technology&rft.au=Luo,%20Xiao&rft.date=2020-04&rft.volume=124&rft.spage=105973&rft.pages=105973-&rft.artnum=105973&rft.issn=0030-3992&rft.eissn=1879-2545&rft_id=info:doi/10.1016/j.optlastec.2019.105973&rft_dat=%3Cproquest_cross%3E2353610932%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2353610932&rft_id=info:pmid/&rft_els_id=S0030399219310059&rfr_iscdi=true |