Non-Hermitian Floquet topological phases: Exceptional points, coalescent edge modes, and the skin effect

Periodically driven non-Hermitian systems can exhibit rich topological band structure and non-Hermitian skin effect, without analogs in their static or Hermitian counterparts. In this work we investigate the exceptional band-touching points in the Floquet quasienergy bands, the topological character...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. B 2020-01, Vol.101 (4), p.1, Article 045415
Hauptverfasser: Zhang, Xizheng, Gong, Jiangbin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page 1
container_title Physical review. B
container_volume 101
creator Zhang, Xizheng
Gong, Jiangbin
description Periodically driven non-Hermitian systems can exhibit rich topological band structure and non-Hermitian skin effect, without analogs in their static or Hermitian counterparts. In this work we investigate the exceptional band-touching points in the Floquet quasienergy bands, the topological characterization of such exceptional points and the Floquet non-Hermitian skin effect (FNHSE). Specifically, we exploit the simplicity of periodically quenched two-band systems in one dimension or two dimensions to analytically obtain the Floquet effective Hamiltonian as well as locations of the many exceptional points possessed by the Floquet bulk bands. Two different types of topological winding numbers are used to characterize the topological features. Bulk-boundary correspondence (BBC) is naturally found to break down due to FNHSE, which can be drastically different among different bulk states. Remarkably, given the simple nature of our model systems, recovering the BBC is doable in practice only for certain parameter regime where a low-order truncation of the characteristic polynomial (which determines the Floquet band structure) becomes feasible. Furthermore, irrespective of which parameter regime we work with, we find a number of intriguing aspects of Floquet topological zero modes and π modes. For example, under the open boundary condition, zero edge modes and π edge modes can individually coalesce and localize at two different boundaries. These anomalous edge states can also switch their accumulation boundaries when a certain system parameter is tuned. These results indicate that non-Hermitian Floquet topological phases, though more challenging to understand than their Hermitian counterparts, can be extremely rich in the presence of FNHSE.
doi_str_mv 10.1103/PhysRevB.101.045415
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2353610586</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2353610586</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-107a94ecad3a4fdca4ad5df71ea0eab5d16639d66c8bcf0aa5c148d2e1a43a503</originalsourceid><addsrcrecordid>eNo9kMFKAzEQhoMoWGqfwEvAq1snzSZtvGlprVBURM_LNJntbt1u1k0q9u3dUvU0w8fPz8zH2KWAoRAgb16KfXilr_uhADGEVKVCnbDeKNUmMUab0_9dwTkbhLABAKHBjMH0WPHk62RB7baMJdZ8XvnPHUUefeMrvy4tVrwpMFC45bNvS00sfX1gvqxjuObWY0XBUh05uTXxrXfUYawdjwXx8FHWnPKcbLxgZzlWgQa_s8_e57O36SJZPj88Tu-WiZVGxkTAGE1KFp3ENHcWU3TK5WNBCIQr5YTW0jit7WRlc0BUVqQTNyKBqUQFss-ujr1Ne3glxGzjd213c8hGUkktQE10l5LHlG19CC3lWdOWW2z3mYDsYDX7s9oBkR2tyh8Tum5t</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2353610586</pqid></control><display><type>article</type><title>Non-Hermitian Floquet topological phases: Exceptional points, coalescent edge modes, and the skin effect</title><source>American Physical Society Journals</source><creator>Zhang, Xizheng ; Gong, Jiangbin</creator><creatorcontrib>Zhang, Xizheng ; Gong, Jiangbin</creatorcontrib><description>Periodically driven non-Hermitian systems can exhibit rich topological band structure and non-Hermitian skin effect, without analogs in their static or Hermitian counterparts. In this work we investigate the exceptional band-touching points in the Floquet quasienergy bands, the topological characterization of such exceptional points and the Floquet non-Hermitian skin effect (FNHSE). Specifically, we exploit the simplicity of periodically quenched two-band systems in one dimension or two dimensions to analytically obtain the Floquet effective Hamiltonian as well as locations of the many exceptional points possessed by the Floquet bulk bands. Two different types of topological winding numbers are used to characterize the topological features. Bulk-boundary correspondence (BBC) is naturally found to break down due to FNHSE, which can be drastically different among different bulk states. Remarkably, given the simple nature of our model systems, recovering the BBC is doable in practice only for certain parameter regime where a low-order truncation of the characteristic polynomial (which determines the Floquet band structure) becomes feasible. Furthermore, irrespective of which parameter regime we work with, we find a number of intriguing aspects of Floquet topological zero modes and π modes. For example, under the open boundary condition, zero edge modes and π edge modes can individually coalesce and localize at two different boundaries. These anomalous edge states can also switch their accumulation boundaries when a certain system parameter is tuned. These results indicate that non-Hermitian Floquet topological phases, though more challenging to understand than their Hermitian counterparts, can be extremely rich in the presence of FNHSE.</description><identifier>ISSN: 2469-9950</identifier><identifier>EISSN: 2469-9969</identifier><identifier>DOI: 10.1103/PhysRevB.101.045415</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Band structure of solids ; Boundary conditions ; Coalescing ; Parameters ; Polynomials ; Skin effect ; Topology ; Two dimensional analysis</subject><ispartof>Physical review. B, 2020-01, Vol.101 (4), p.1, Article 045415</ispartof><rights>Copyright American Physical Society Jan 15, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-107a94ecad3a4fdca4ad5df71ea0eab5d16639d66c8bcf0aa5c148d2e1a43a503</citedby><cites>FETCH-LOGICAL-c393t-107a94ecad3a4fdca4ad5df71ea0eab5d16639d66c8bcf0aa5c148d2e1a43a503</cites><orcidid>0000-0003-1280-6493</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2876,2877,27924,27925</link.rule.ids></links><search><creatorcontrib>Zhang, Xizheng</creatorcontrib><creatorcontrib>Gong, Jiangbin</creatorcontrib><title>Non-Hermitian Floquet topological phases: Exceptional points, coalescent edge modes, and the skin effect</title><title>Physical review. B</title><description>Periodically driven non-Hermitian systems can exhibit rich topological band structure and non-Hermitian skin effect, without analogs in their static or Hermitian counterparts. In this work we investigate the exceptional band-touching points in the Floquet quasienergy bands, the topological characterization of such exceptional points and the Floquet non-Hermitian skin effect (FNHSE). Specifically, we exploit the simplicity of periodically quenched two-band systems in one dimension or two dimensions to analytically obtain the Floquet effective Hamiltonian as well as locations of the many exceptional points possessed by the Floquet bulk bands. Two different types of topological winding numbers are used to characterize the topological features. Bulk-boundary correspondence (BBC) is naturally found to break down due to FNHSE, which can be drastically different among different bulk states. Remarkably, given the simple nature of our model systems, recovering the BBC is doable in practice only for certain parameter regime where a low-order truncation of the characteristic polynomial (which determines the Floquet band structure) becomes feasible. Furthermore, irrespective of which parameter regime we work with, we find a number of intriguing aspects of Floquet topological zero modes and π modes. For example, under the open boundary condition, zero edge modes and π edge modes can individually coalesce and localize at two different boundaries. These anomalous edge states can also switch their accumulation boundaries when a certain system parameter is tuned. These results indicate that non-Hermitian Floquet topological phases, though more challenging to understand than their Hermitian counterparts, can be extremely rich in the presence of FNHSE.</description><subject>Band structure of solids</subject><subject>Boundary conditions</subject><subject>Coalescing</subject><subject>Parameters</subject><subject>Polynomials</subject><subject>Skin effect</subject><subject>Topology</subject><subject>Two dimensional analysis</subject><issn>2469-9950</issn><issn>2469-9969</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kMFKAzEQhoMoWGqfwEvAq1snzSZtvGlprVBURM_LNJntbt1u1k0q9u3dUvU0w8fPz8zH2KWAoRAgb16KfXilr_uhADGEVKVCnbDeKNUmMUab0_9dwTkbhLABAKHBjMH0WPHk62RB7baMJdZ8XvnPHUUefeMrvy4tVrwpMFC45bNvS00sfX1gvqxjuObWY0XBUh05uTXxrXfUYawdjwXx8FHWnPKcbLxgZzlWgQa_s8_e57O36SJZPj88Tu-WiZVGxkTAGE1KFp3ENHcWU3TK5WNBCIQr5YTW0jit7WRlc0BUVqQTNyKBqUQFss-ujr1Ne3glxGzjd213c8hGUkktQE10l5LHlG19CC3lWdOWW2z3mYDsYDX7s9oBkR2tyh8Tum5t</recordid><startdate>20200113</startdate><enddate>20200113</enddate><creator>Zhang, Xizheng</creator><creator>Gong, Jiangbin</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1280-6493</orcidid></search><sort><creationdate>20200113</creationdate><title>Non-Hermitian Floquet topological phases: Exceptional points, coalescent edge modes, and the skin effect</title><author>Zhang, Xizheng ; Gong, Jiangbin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-107a94ecad3a4fdca4ad5df71ea0eab5d16639d66c8bcf0aa5c148d2e1a43a503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Band structure of solids</topic><topic>Boundary conditions</topic><topic>Coalescing</topic><topic>Parameters</topic><topic>Polynomials</topic><topic>Skin effect</topic><topic>Topology</topic><topic>Two dimensional analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Xizheng</creatorcontrib><creatorcontrib>Gong, Jiangbin</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Xizheng</au><au>Gong, Jiangbin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non-Hermitian Floquet topological phases: Exceptional points, coalescent edge modes, and the skin effect</atitle><jtitle>Physical review. B</jtitle><date>2020-01-13</date><risdate>2020</risdate><volume>101</volume><issue>4</issue><spage>1</spage><pages>1-</pages><artnum>045415</artnum><issn>2469-9950</issn><eissn>2469-9969</eissn><abstract>Periodically driven non-Hermitian systems can exhibit rich topological band structure and non-Hermitian skin effect, without analogs in their static or Hermitian counterparts. In this work we investigate the exceptional band-touching points in the Floquet quasienergy bands, the topological characterization of such exceptional points and the Floquet non-Hermitian skin effect (FNHSE). Specifically, we exploit the simplicity of periodically quenched two-band systems in one dimension or two dimensions to analytically obtain the Floquet effective Hamiltonian as well as locations of the many exceptional points possessed by the Floquet bulk bands. Two different types of topological winding numbers are used to characterize the topological features. Bulk-boundary correspondence (BBC) is naturally found to break down due to FNHSE, which can be drastically different among different bulk states. Remarkably, given the simple nature of our model systems, recovering the BBC is doable in practice only for certain parameter regime where a low-order truncation of the characteristic polynomial (which determines the Floquet band structure) becomes feasible. Furthermore, irrespective of which parameter regime we work with, we find a number of intriguing aspects of Floquet topological zero modes and π modes. For example, under the open boundary condition, zero edge modes and π edge modes can individually coalesce and localize at two different boundaries. These anomalous edge states can also switch their accumulation boundaries when a certain system parameter is tuned. These results indicate that non-Hermitian Floquet topological phases, though more challenging to understand than their Hermitian counterparts, can be extremely rich in the presence of FNHSE.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevB.101.045415</doi><orcidid>https://orcid.org/0000-0003-1280-6493</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2469-9950
ispartof Physical review. B, 2020-01, Vol.101 (4), p.1, Article 045415
issn 2469-9950
2469-9969
language eng
recordid cdi_proquest_journals_2353610586
source American Physical Society Journals
subjects Band structure of solids
Boundary conditions
Coalescing
Parameters
Polynomials
Skin effect
Topology
Two dimensional analysis
title Non-Hermitian Floquet topological phases: Exceptional points, coalescent edge modes, and the skin effect
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T05%3A18%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non-Hermitian%20Floquet%20topological%20phases:%20Exceptional%20points,%20coalescent%20edge%20modes,%20and%20the%20skin%20effect&rft.jtitle=Physical%20review.%20B&rft.au=Zhang,%20Xizheng&rft.date=2020-01-13&rft.volume=101&rft.issue=4&rft.spage=1&rft.pages=1-&rft.artnum=045415&rft.issn=2469-9950&rft.eissn=2469-9969&rft_id=info:doi/10.1103/PhysRevB.101.045415&rft_dat=%3Cproquest_cross%3E2353610586%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2353610586&rft_id=info:pmid/&rfr_iscdi=true