LES of the Gas-Exchange Process Inside an Internal Combustion Engine Using a High-Order Method
High-order, wall-resolved large eddy simulations (LES) using the spectral element method (SEM) were performed to investigate the gas-exchange process inside a laboratory-scale internal combustion engine (ICE) and study the in-cylinder flow evolution. Using a stabilizing filter, over 30 engine cycles...
Gespeichert in:
Veröffentlicht in: | Flow, turbulence and combustion turbulence and combustion, 2020-03, Vol.104 (2-3), p.673-692 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 692 |
---|---|
container_issue | 2-3 |
container_start_page | 673 |
container_title | Flow, turbulence and combustion |
container_volume | 104 |
creator | Giannakopoulos, G. K. Frouzakis, C. E. Fischer, P. F. Tomboulides, A. G. Boulouchos, K. |
description | High-order, wall-resolved large eddy simulations (LES) using the spectral element method (SEM) were performed to investigate the gas-exchange process inside a laboratory-scale internal combustion engine (ICE) and study the in-cylinder flow evolution. Using a stabilizing filter, over 30 engine cycles were simulated to generate data for statistical analysis, which demonstrated good agreement in the mean and root mean-squared (rms) phase-averaged velocity fields across three different filter parameter/resolution combinations. The large scale flow motion was characterized during each stage of the engine cycle. Tumble ratio profiles indicate peak values during the intake stroke which decay during compression and are almost non-existent thereafter. The tumble breakdown process is quantified by investigating the evolution of the mean and turbulent kinetic energy over the full cycle, and its effect on the evolution of the momentum and thermal boundary layers is discussed. Algorithmic advances to the computational fluid dynamics (CFD) solver Nek5000, employed in the current study, resulted in significant reduction in the wall-time needed for the simulation of each cycle for mesh resolutions of at least an order of magnitude higher than the current state-of-the-art. |
doi_str_mv | 10.1007/s10494-019-00067-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2353609682</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2353609682</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-8539b2cca210d871ec0333a3ba7427c2e96b8f17f82d0ccda0d8caa7af822c183</originalsourceid><addsrcrecordid>eNp9kE1LAzEURYMoWKt_wFXAdTQfM5NkKWW0hUoF7daQyWQ-SpvUZAr67007gjtX7_I49_E4ANwSfE8w5g-R4ExmCBOJMMYFR-wMTEjOGSJS8POUmShQQUR2Ca5i3JwgLCfgY1m-Qd_AobPwWUdUfplOu9bC1-CNjREuXOxrC7VLabDB6S2c-V11iEPvHSxd2zsL17F3LdRw3rcdWoXaBvhih87X1-Ci0dtob37nFKyfyvfZHC1Xz4vZ4xIZlhcDEjmTFTVGU4JrwYk1mDGmWaV5RrmhVhaVaAhvBK2xMbVOlNGa67Sghgg2BXfj3X3wnwcbB7Xxh-OzUVGWswLLQtBE0ZEywccYbKP2od_p8K0IVkePavSokkd1UqRYKrGxFBOczIS_0_-0fgCmIHS-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2353609682</pqid></control><display><type>article</type><title>LES of the Gas-Exchange Process Inside an Internal Combustion Engine Using a High-Order Method</title><source>SpringerNature Journals</source><creator>Giannakopoulos, G. K. ; Frouzakis, C. E. ; Fischer, P. F. ; Tomboulides, A. G. ; Boulouchos, K.</creator><creatorcontrib>Giannakopoulos, G. K. ; Frouzakis, C. E. ; Fischer, P. F. ; Tomboulides, A. G. ; Boulouchos, K.</creatorcontrib><description>High-order, wall-resolved large eddy simulations (LES) using the spectral element method (SEM) were performed to investigate the gas-exchange process inside a laboratory-scale internal combustion engine (ICE) and study the in-cylinder flow evolution. Using a stabilizing filter, over 30 engine cycles were simulated to generate data for statistical analysis, which demonstrated good agreement in the mean and root mean-squared (rms) phase-averaged velocity fields across three different filter parameter/resolution combinations. The large scale flow motion was characterized during each stage of the engine cycle. Tumble ratio profiles indicate peak values during the intake stroke which decay during compression and are almost non-existent thereafter. The tumble breakdown process is quantified by investigating the evolution of the mean and turbulent kinetic energy over the full cycle, and its effect on the evolution of the momentum and thermal boundary layers is discussed. Algorithmic advances to the computational fluid dynamics (CFD) solver Nek5000, employed in the current study, resulted in significant reduction in the wall-time needed for the simulation of each cycle for mesh resolutions of at least an order of magnitude higher than the current state-of-the-art.</description><identifier>ISSN: 1386-6184</identifier><identifier>EISSN: 1573-1987</identifier><identifier>DOI: 10.1007/s10494-019-00067-3</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Automotive Engineering ; Computational fluid dynamics ; Computer simulation ; Cycle ratio ; Cylinders ; Engineering ; Engineering Fluid Dynamics ; Engineering Thermodynamics ; Evolution ; Exchanging ; Finite element method ; Fluid flow ; Fluid- and Aerodynamics ; Heat and Mass Transfer ; Internal combustion engines ; Kinetic energy ; Large eddy simulation ; Spectral element method ; Statistical analysis ; Thermal boundary layer ; Velocity distribution</subject><ispartof>Flow, turbulence and combustion, 2020-03, Vol.104 (2-3), p.673-692</ispartof><rights>Springer Nature B.V. 2019</rights><rights>2019© Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-8539b2cca210d871ec0333a3ba7427c2e96b8f17f82d0ccda0d8caa7af822c183</citedby><cites>FETCH-LOGICAL-c356t-8539b2cca210d871ec0333a3ba7427c2e96b8f17f82d0ccda0d8caa7af822c183</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10494-019-00067-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10494-019-00067-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Giannakopoulos, G. K.</creatorcontrib><creatorcontrib>Frouzakis, C. E.</creatorcontrib><creatorcontrib>Fischer, P. F.</creatorcontrib><creatorcontrib>Tomboulides, A. G.</creatorcontrib><creatorcontrib>Boulouchos, K.</creatorcontrib><title>LES of the Gas-Exchange Process Inside an Internal Combustion Engine Using a High-Order Method</title><title>Flow, turbulence and combustion</title><addtitle>Flow Turbulence Combust</addtitle><description>High-order, wall-resolved large eddy simulations (LES) using the spectral element method (SEM) were performed to investigate the gas-exchange process inside a laboratory-scale internal combustion engine (ICE) and study the in-cylinder flow evolution. Using a stabilizing filter, over 30 engine cycles were simulated to generate data for statistical analysis, which demonstrated good agreement in the mean and root mean-squared (rms) phase-averaged velocity fields across three different filter parameter/resolution combinations. The large scale flow motion was characterized during each stage of the engine cycle. Tumble ratio profiles indicate peak values during the intake stroke which decay during compression and are almost non-existent thereafter. The tumble breakdown process is quantified by investigating the evolution of the mean and turbulent kinetic energy over the full cycle, and its effect on the evolution of the momentum and thermal boundary layers is discussed. Algorithmic advances to the computational fluid dynamics (CFD) solver Nek5000, employed in the current study, resulted in significant reduction in the wall-time needed for the simulation of each cycle for mesh resolutions of at least an order of magnitude higher than the current state-of-the-art.</description><subject>Automotive Engineering</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Cycle ratio</subject><subject>Cylinders</subject><subject>Engineering</subject><subject>Engineering Fluid Dynamics</subject><subject>Engineering Thermodynamics</subject><subject>Evolution</subject><subject>Exchanging</subject><subject>Finite element method</subject><subject>Fluid flow</subject><subject>Fluid- and Aerodynamics</subject><subject>Heat and Mass Transfer</subject><subject>Internal combustion engines</subject><subject>Kinetic energy</subject><subject>Large eddy simulation</subject><subject>Spectral element method</subject><subject>Statistical analysis</subject><subject>Thermal boundary layer</subject><subject>Velocity distribution</subject><issn>1386-6184</issn><issn>1573-1987</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEURYMoWKt_wFXAdTQfM5NkKWW0hUoF7daQyWQ-SpvUZAr67007gjtX7_I49_E4ANwSfE8w5g-R4ExmCBOJMMYFR-wMTEjOGSJS8POUmShQQUR2Ca5i3JwgLCfgY1m-Qd_AobPwWUdUfplOu9bC1-CNjREuXOxrC7VLabDB6S2c-V11iEPvHSxd2zsL17F3LdRw3rcdWoXaBvhih87X1-Ci0dtob37nFKyfyvfZHC1Xz4vZ4xIZlhcDEjmTFTVGU4JrwYk1mDGmWaV5RrmhVhaVaAhvBK2xMbVOlNGa67Sghgg2BXfj3X3wnwcbB7Xxh-OzUVGWswLLQtBE0ZEywccYbKP2od_p8K0IVkePavSokkd1UqRYKrGxFBOczIS_0_-0fgCmIHS-</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Giannakopoulos, G. K.</creator><creator>Frouzakis, C. E.</creator><creator>Fischer, P. F.</creator><creator>Tomboulides, A. G.</creator><creator>Boulouchos, K.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200301</creationdate><title>LES of the Gas-Exchange Process Inside an Internal Combustion Engine Using a High-Order Method</title><author>Giannakopoulos, G. K. ; Frouzakis, C. E. ; Fischer, P. F. ; Tomboulides, A. G. ; Boulouchos, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-8539b2cca210d871ec0333a3ba7427c2e96b8f17f82d0ccda0d8caa7af822c183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Automotive Engineering</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Cycle ratio</topic><topic>Cylinders</topic><topic>Engineering</topic><topic>Engineering Fluid Dynamics</topic><topic>Engineering Thermodynamics</topic><topic>Evolution</topic><topic>Exchanging</topic><topic>Finite element method</topic><topic>Fluid flow</topic><topic>Fluid- and Aerodynamics</topic><topic>Heat and Mass Transfer</topic><topic>Internal combustion engines</topic><topic>Kinetic energy</topic><topic>Large eddy simulation</topic><topic>Spectral element method</topic><topic>Statistical analysis</topic><topic>Thermal boundary layer</topic><topic>Velocity distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Giannakopoulos, G. K.</creatorcontrib><creatorcontrib>Frouzakis, C. E.</creatorcontrib><creatorcontrib>Fischer, P. F.</creatorcontrib><creatorcontrib>Tomboulides, A. G.</creatorcontrib><creatorcontrib>Boulouchos, K.</creatorcontrib><collection>CrossRef</collection><jtitle>Flow, turbulence and combustion</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Giannakopoulos, G. K.</au><au>Frouzakis, C. E.</au><au>Fischer, P. F.</au><au>Tomboulides, A. G.</au><au>Boulouchos, K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>LES of the Gas-Exchange Process Inside an Internal Combustion Engine Using a High-Order Method</atitle><jtitle>Flow, turbulence and combustion</jtitle><stitle>Flow Turbulence Combust</stitle><date>2020-03-01</date><risdate>2020</risdate><volume>104</volume><issue>2-3</issue><spage>673</spage><epage>692</epage><pages>673-692</pages><issn>1386-6184</issn><eissn>1573-1987</eissn><abstract>High-order, wall-resolved large eddy simulations (LES) using the spectral element method (SEM) were performed to investigate the gas-exchange process inside a laboratory-scale internal combustion engine (ICE) and study the in-cylinder flow evolution. Using a stabilizing filter, over 30 engine cycles were simulated to generate data for statistical analysis, which demonstrated good agreement in the mean and root mean-squared (rms) phase-averaged velocity fields across three different filter parameter/resolution combinations. The large scale flow motion was characterized during each stage of the engine cycle. Tumble ratio profiles indicate peak values during the intake stroke which decay during compression and are almost non-existent thereafter. The tumble breakdown process is quantified by investigating the evolution of the mean and turbulent kinetic energy over the full cycle, and its effect on the evolution of the momentum and thermal boundary layers is discussed. Algorithmic advances to the computational fluid dynamics (CFD) solver Nek5000, employed in the current study, resulted in significant reduction in the wall-time needed for the simulation of each cycle for mesh resolutions of at least an order of magnitude higher than the current state-of-the-art.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10494-019-00067-3</doi><tpages>20</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1386-6184 |
ispartof | Flow, turbulence and combustion, 2020-03, Vol.104 (2-3), p.673-692 |
issn | 1386-6184 1573-1987 |
language | eng |
recordid | cdi_proquest_journals_2353609682 |
source | SpringerNature Journals |
subjects | Automotive Engineering Computational fluid dynamics Computer simulation Cycle ratio Cylinders Engineering Engineering Fluid Dynamics Engineering Thermodynamics Evolution Exchanging Finite element method Fluid flow Fluid- and Aerodynamics Heat and Mass Transfer Internal combustion engines Kinetic energy Large eddy simulation Spectral element method Statistical analysis Thermal boundary layer Velocity distribution |
title | LES of the Gas-Exchange Process Inside an Internal Combustion Engine Using a High-Order Method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T08%3A02%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=LES%20of%20the%20Gas-Exchange%20Process%20Inside%20an%20Internal%20Combustion%20Engine%20Using%20a%20High-Order%20Method&rft.jtitle=Flow,%20turbulence%20and%20combustion&rft.au=Giannakopoulos,%20G.%20K.&rft.date=2020-03-01&rft.volume=104&rft.issue=2-3&rft.spage=673&rft.epage=692&rft.pages=673-692&rft.issn=1386-6184&rft.eissn=1573-1987&rft_id=info:doi/10.1007/s10494-019-00067-3&rft_dat=%3Cproquest_cross%3E2353609682%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2353609682&rft_id=info:pmid/&rfr_iscdi=true |