LES of the Gas-Exchange Process Inside an Internal Combustion Engine Using a High-Order Method

High-order, wall-resolved large eddy simulations (LES) using the spectral element method (SEM) were performed to investigate the gas-exchange process inside a laboratory-scale internal combustion engine (ICE) and study the in-cylinder flow evolution. Using a stabilizing filter, over 30 engine cycles...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Flow, turbulence and combustion turbulence and combustion, 2020-03, Vol.104 (2-3), p.673-692
Hauptverfasser: Giannakopoulos, G. K., Frouzakis, C. E., Fischer, P. F., Tomboulides, A. G., Boulouchos, K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 692
container_issue 2-3
container_start_page 673
container_title Flow, turbulence and combustion
container_volume 104
creator Giannakopoulos, G. K.
Frouzakis, C. E.
Fischer, P. F.
Tomboulides, A. G.
Boulouchos, K.
description High-order, wall-resolved large eddy simulations (LES) using the spectral element method (SEM) were performed to investigate the gas-exchange process inside a laboratory-scale internal combustion engine (ICE) and study the in-cylinder flow evolution. Using a stabilizing filter, over 30 engine cycles were simulated to generate data for statistical analysis, which demonstrated good agreement in the mean and root mean-squared (rms) phase-averaged velocity fields across three different filter parameter/resolution combinations. The large scale flow motion was characterized during each stage of the engine cycle. Tumble ratio profiles indicate peak values during the intake stroke which decay during compression and are almost non-existent thereafter. The tumble breakdown process is quantified by investigating the evolution of the mean and turbulent kinetic energy over the full cycle, and its effect on the evolution of the momentum and thermal boundary layers is discussed. Algorithmic advances to the computational fluid dynamics (CFD) solver Nek5000, employed in the current study, resulted in significant reduction in the wall-time needed for the simulation of each cycle for mesh resolutions of at least an order of magnitude higher than the current state-of-the-art.
doi_str_mv 10.1007/s10494-019-00067-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2353609682</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2353609682</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-8539b2cca210d871ec0333a3ba7427c2e96b8f17f82d0ccda0d8caa7af822c183</originalsourceid><addsrcrecordid>eNp9kE1LAzEURYMoWKt_wFXAdTQfM5NkKWW0hUoF7daQyWQ-SpvUZAr67007gjtX7_I49_E4ANwSfE8w5g-R4ExmCBOJMMYFR-wMTEjOGSJS8POUmShQQUR2Ca5i3JwgLCfgY1m-Qd_AobPwWUdUfplOu9bC1-CNjREuXOxrC7VLabDB6S2c-V11iEPvHSxd2zsL17F3LdRw3rcdWoXaBvhih87X1-Ci0dtob37nFKyfyvfZHC1Xz4vZ4xIZlhcDEjmTFTVGU4JrwYk1mDGmWaV5RrmhVhaVaAhvBK2xMbVOlNGa67Sghgg2BXfj3X3wnwcbB7Xxh-OzUVGWswLLQtBE0ZEywccYbKP2od_p8K0IVkePavSokkd1UqRYKrGxFBOczIS_0_-0fgCmIHS-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2353609682</pqid></control><display><type>article</type><title>LES of the Gas-Exchange Process Inside an Internal Combustion Engine Using a High-Order Method</title><source>SpringerNature Journals</source><creator>Giannakopoulos, G. K. ; Frouzakis, C. E. ; Fischer, P. F. ; Tomboulides, A. G. ; Boulouchos, K.</creator><creatorcontrib>Giannakopoulos, G. K. ; Frouzakis, C. E. ; Fischer, P. F. ; Tomboulides, A. G. ; Boulouchos, K.</creatorcontrib><description>High-order, wall-resolved large eddy simulations (LES) using the spectral element method (SEM) were performed to investigate the gas-exchange process inside a laboratory-scale internal combustion engine (ICE) and study the in-cylinder flow evolution. Using a stabilizing filter, over 30 engine cycles were simulated to generate data for statistical analysis, which demonstrated good agreement in the mean and root mean-squared (rms) phase-averaged velocity fields across three different filter parameter/resolution combinations. The large scale flow motion was characterized during each stage of the engine cycle. Tumble ratio profiles indicate peak values during the intake stroke which decay during compression and are almost non-existent thereafter. The tumble breakdown process is quantified by investigating the evolution of the mean and turbulent kinetic energy over the full cycle, and its effect on the evolution of the momentum and thermal boundary layers is discussed. Algorithmic advances to the computational fluid dynamics (CFD) solver Nek5000, employed in the current study, resulted in significant reduction in the wall-time needed for the simulation of each cycle for mesh resolutions of at least an order of magnitude higher than the current state-of-the-art.</description><identifier>ISSN: 1386-6184</identifier><identifier>EISSN: 1573-1987</identifier><identifier>DOI: 10.1007/s10494-019-00067-3</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Automotive Engineering ; Computational fluid dynamics ; Computer simulation ; Cycle ratio ; Cylinders ; Engineering ; Engineering Fluid Dynamics ; Engineering Thermodynamics ; Evolution ; Exchanging ; Finite element method ; Fluid flow ; Fluid- and Aerodynamics ; Heat and Mass Transfer ; Internal combustion engines ; Kinetic energy ; Large eddy simulation ; Spectral element method ; Statistical analysis ; Thermal boundary layer ; Velocity distribution</subject><ispartof>Flow, turbulence and combustion, 2020-03, Vol.104 (2-3), p.673-692</ispartof><rights>Springer Nature B.V. 2019</rights><rights>2019© Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-8539b2cca210d871ec0333a3ba7427c2e96b8f17f82d0ccda0d8caa7af822c183</citedby><cites>FETCH-LOGICAL-c356t-8539b2cca210d871ec0333a3ba7427c2e96b8f17f82d0ccda0d8caa7af822c183</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10494-019-00067-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10494-019-00067-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Giannakopoulos, G. K.</creatorcontrib><creatorcontrib>Frouzakis, C. E.</creatorcontrib><creatorcontrib>Fischer, P. F.</creatorcontrib><creatorcontrib>Tomboulides, A. G.</creatorcontrib><creatorcontrib>Boulouchos, K.</creatorcontrib><title>LES of the Gas-Exchange Process Inside an Internal Combustion Engine Using a High-Order Method</title><title>Flow, turbulence and combustion</title><addtitle>Flow Turbulence Combust</addtitle><description>High-order, wall-resolved large eddy simulations (LES) using the spectral element method (SEM) were performed to investigate the gas-exchange process inside a laboratory-scale internal combustion engine (ICE) and study the in-cylinder flow evolution. Using a stabilizing filter, over 30 engine cycles were simulated to generate data for statistical analysis, which demonstrated good agreement in the mean and root mean-squared (rms) phase-averaged velocity fields across three different filter parameter/resolution combinations. The large scale flow motion was characterized during each stage of the engine cycle. Tumble ratio profiles indicate peak values during the intake stroke which decay during compression and are almost non-existent thereafter. The tumble breakdown process is quantified by investigating the evolution of the mean and turbulent kinetic energy over the full cycle, and its effect on the evolution of the momentum and thermal boundary layers is discussed. Algorithmic advances to the computational fluid dynamics (CFD) solver Nek5000, employed in the current study, resulted in significant reduction in the wall-time needed for the simulation of each cycle for mesh resolutions of at least an order of magnitude higher than the current state-of-the-art.</description><subject>Automotive Engineering</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Cycle ratio</subject><subject>Cylinders</subject><subject>Engineering</subject><subject>Engineering Fluid Dynamics</subject><subject>Engineering Thermodynamics</subject><subject>Evolution</subject><subject>Exchanging</subject><subject>Finite element method</subject><subject>Fluid flow</subject><subject>Fluid- and Aerodynamics</subject><subject>Heat and Mass Transfer</subject><subject>Internal combustion engines</subject><subject>Kinetic energy</subject><subject>Large eddy simulation</subject><subject>Spectral element method</subject><subject>Statistical analysis</subject><subject>Thermal boundary layer</subject><subject>Velocity distribution</subject><issn>1386-6184</issn><issn>1573-1987</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEURYMoWKt_wFXAdTQfM5NkKWW0hUoF7daQyWQ-SpvUZAr67007gjtX7_I49_E4ANwSfE8w5g-R4ExmCBOJMMYFR-wMTEjOGSJS8POUmShQQUR2Ca5i3JwgLCfgY1m-Qd_AobPwWUdUfplOu9bC1-CNjREuXOxrC7VLabDB6S2c-V11iEPvHSxd2zsL17F3LdRw3rcdWoXaBvhih87X1-Ci0dtob37nFKyfyvfZHC1Xz4vZ4xIZlhcDEjmTFTVGU4JrwYk1mDGmWaV5RrmhVhaVaAhvBK2xMbVOlNGa67Sghgg2BXfj3X3wnwcbB7Xxh-OzUVGWswLLQtBE0ZEywccYbKP2od_p8K0IVkePavSokkd1UqRYKrGxFBOczIS_0_-0fgCmIHS-</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Giannakopoulos, G. K.</creator><creator>Frouzakis, C. E.</creator><creator>Fischer, P. F.</creator><creator>Tomboulides, A. G.</creator><creator>Boulouchos, K.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200301</creationdate><title>LES of the Gas-Exchange Process Inside an Internal Combustion Engine Using a High-Order Method</title><author>Giannakopoulos, G. K. ; Frouzakis, C. E. ; Fischer, P. F. ; Tomboulides, A. G. ; Boulouchos, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-8539b2cca210d871ec0333a3ba7427c2e96b8f17f82d0ccda0d8caa7af822c183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Automotive Engineering</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Cycle ratio</topic><topic>Cylinders</topic><topic>Engineering</topic><topic>Engineering Fluid Dynamics</topic><topic>Engineering Thermodynamics</topic><topic>Evolution</topic><topic>Exchanging</topic><topic>Finite element method</topic><topic>Fluid flow</topic><topic>Fluid- and Aerodynamics</topic><topic>Heat and Mass Transfer</topic><topic>Internal combustion engines</topic><topic>Kinetic energy</topic><topic>Large eddy simulation</topic><topic>Spectral element method</topic><topic>Statistical analysis</topic><topic>Thermal boundary layer</topic><topic>Velocity distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Giannakopoulos, G. K.</creatorcontrib><creatorcontrib>Frouzakis, C. E.</creatorcontrib><creatorcontrib>Fischer, P. F.</creatorcontrib><creatorcontrib>Tomboulides, A. G.</creatorcontrib><creatorcontrib>Boulouchos, K.</creatorcontrib><collection>CrossRef</collection><jtitle>Flow, turbulence and combustion</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Giannakopoulos, G. K.</au><au>Frouzakis, C. E.</au><au>Fischer, P. F.</au><au>Tomboulides, A. G.</au><au>Boulouchos, K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>LES of the Gas-Exchange Process Inside an Internal Combustion Engine Using a High-Order Method</atitle><jtitle>Flow, turbulence and combustion</jtitle><stitle>Flow Turbulence Combust</stitle><date>2020-03-01</date><risdate>2020</risdate><volume>104</volume><issue>2-3</issue><spage>673</spage><epage>692</epage><pages>673-692</pages><issn>1386-6184</issn><eissn>1573-1987</eissn><abstract>High-order, wall-resolved large eddy simulations (LES) using the spectral element method (SEM) were performed to investigate the gas-exchange process inside a laboratory-scale internal combustion engine (ICE) and study the in-cylinder flow evolution. Using a stabilizing filter, over 30 engine cycles were simulated to generate data for statistical analysis, which demonstrated good agreement in the mean and root mean-squared (rms) phase-averaged velocity fields across three different filter parameter/resolution combinations. The large scale flow motion was characterized during each stage of the engine cycle. Tumble ratio profiles indicate peak values during the intake stroke which decay during compression and are almost non-existent thereafter. The tumble breakdown process is quantified by investigating the evolution of the mean and turbulent kinetic energy over the full cycle, and its effect on the evolution of the momentum and thermal boundary layers is discussed. Algorithmic advances to the computational fluid dynamics (CFD) solver Nek5000, employed in the current study, resulted in significant reduction in the wall-time needed for the simulation of each cycle for mesh resolutions of at least an order of magnitude higher than the current state-of-the-art.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10494-019-00067-3</doi><tpages>20</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1386-6184
ispartof Flow, turbulence and combustion, 2020-03, Vol.104 (2-3), p.673-692
issn 1386-6184
1573-1987
language eng
recordid cdi_proquest_journals_2353609682
source SpringerNature Journals
subjects Automotive Engineering
Computational fluid dynamics
Computer simulation
Cycle ratio
Cylinders
Engineering
Engineering Fluid Dynamics
Engineering Thermodynamics
Evolution
Exchanging
Finite element method
Fluid flow
Fluid- and Aerodynamics
Heat and Mass Transfer
Internal combustion engines
Kinetic energy
Large eddy simulation
Spectral element method
Statistical analysis
Thermal boundary layer
Velocity distribution
title LES of the Gas-Exchange Process Inside an Internal Combustion Engine Using a High-Order Method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T08%3A02%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=LES%20of%20the%20Gas-Exchange%20Process%20Inside%20an%20Internal%20Combustion%20Engine%20Using%20a%20High-Order%20Method&rft.jtitle=Flow,%20turbulence%20and%20combustion&rft.au=Giannakopoulos,%20G.%20K.&rft.date=2020-03-01&rft.volume=104&rft.issue=2-3&rft.spage=673&rft.epage=692&rft.pages=673-692&rft.issn=1386-6184&rft.eissn=1573-1987&rft_id=info:doi/10.1007/s10494-019-00067-3&rft_dat=%3Cproquest_cross%3E2353609682%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2353609682&rft_id=info:pmid/&rfr_iscdi=true