Cascades of temperature and entropy fluctuations in compressible turbulence
Cascades of temperature and entropy fluctuations are studied by numerical simulations of stationary three-dimensional compressible turbulence with a heat source. The fluctuation spectra of velocity, compressible velocity component, density and pressure exhibit the $-5/3$ scaling in an inertial range...
Gespeichert in:
Veröffentlicht in: | Journal of fluid mechanics 2019-05, Vol.867, p.195-215 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 215 |
---|---|
container_issue | |
container_start_page | 195 |
container_title | Journal of fluid mechanics |
container_volume | 867 |
creator | Wang, Jianchun Wan, Minping Chen, Song Xie, Chenyue Wang, Lian-Ping Chen, Shiyi |
description | Cascades of temperature and entropy fluctuations are studied by numerical simulations of stationary three-dimensional compressible turbulence with a heat source. The fluctuation spectra of velocity, compressible velocity component, density and pressure exhibit the
$-5/3$
scaling in an inertial range. The strong acoustic equilibrium relation between spectra of the compressible velocity component and pressure is observed. The
$-5/3$
scaling behaviour is also identified for the fluctuation spectra of temperature and entropy, with the Obukhov–Corrsin constants close to that of a passive scalar spectrum. It is shown by Kovasznay decomposition that the dynamics of the temperature field is dominated by the entropic mode. The average subgrid-scale (SGS) fluxes of temperature and entropy normalized by the total dissipation rates are close to 1 in the inertial range. The cascade of temperature is dominated by the compressible mode of the velocity field, indicating that the theory of a passive scalar in incompressible turbulence is not suitable to describe the inter-scale transfer of temperature in compressible turbulence. In contrast, the cascade of entropy is dominated by the solenoidal mode of the velocity field. The different behaviours of cascades of temperature and entropy are partly explained by the geometrical properties of SGS fluxes. Moreover, the different effects of local compressibility on the SGS fluxes of temperature and entropy are investigated by conditional averaging with respect to the filtered dilatation, demonstrating that the effect of compressibility on the cascade of temperature is much stronger than on the cascade of entropy. |
doi_str_mv | 10.1017/jfm.2019.116 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2353070370</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2019_116</cupid><sourcerecordid>2353070370</sourcerecordid><originalsourceid>FETCH-LOGICAL-c302t-6c90b54026bff0dec462cd2193cc89c67fe4bc1c10d47cac02fb3903b8b3da373</originalsourceid><addsrcrecordid>eNptkEtLAzEUhYMoWKs7f0DArTPeJNOZZinFFxbc6Dokd25kyrxMMov-e6e04EY4cDffPQc-xm4F5AJE9bDzXS5B6FyI8owtRFHqrCqL1TlbAEiZCSHhkl3FuAMQCnS1YO8bG9HWFPngeaJupGDTFIjbvubUpzCMe-7bCdNkUzP0kTc9x6EbA8XYuJb4TLuppR7pml1420a6Od0l-3p--ty8ZtuPl7fN4zZDBTJlJWpwqwJk6byHmrAoJdZSaIW41lhWngqHAgXURYUWQXqnNCi3dqq2qlJLdnfsHcPwM1FMZjdMoZ8njVQrBRWoOUt2f6QwDDEG8mYMTWfD3ggwB11m1mUOusysa8bzE247F5r6m_5a_334BfFgbeo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2353070370</pqid></control><display><type>article</type><title>Cascades of temperature and entropy fluctuations in compressible turbulence</title><source>Cambridge Journals</source><creator>Wang, Jianchun ; Wan, Minping ; Chen, Song ; Xie, Chenyue ; Wang, Lian-Ping ; Chen, Shiyi</creator><creatorcontrib>Wang, Jianchun ; Wan, Minping ; Chen, Song ; Xie, Chenyue ; Wang, Lian-Ping ; Chen, Shiyi</creatorcontrib><description>Cascades of temperature and entropy fluctuations are studied by numerical simulations of stationary three-dimensional compressible turbulence with a heat source. The fluctuation spectra of velocity, compressible velocity component, density and pressure exhibit the
$-5/3$
scaling in an inertial range. The strong acoustic equilibrium relation between spectra of the compressible velocity component and pressure is observed. The
$-5/3$
scaling behaviour is also identified for the fluctuation spectra of temperature and entropy, with the Obukhov–Corrsin constants close to that of a passive scalar spectrum. It is shown by Kovasznay decomposition that the dynamics of the temperature field is dominated by the entropic mode. The average subgrid-scale (SGS) fluxes of temperature and entropy normalized by the total dissipation rates are close to 1 in the inertial range. The cascade of temperature is dominated by the compressible mode of the velocity field, indicating that the theory of a passive scalar in incompressible turbulence is not suitable to describe the inter-scale transfer of temperature in compressible turbulence. In contrast, the cascade of entropy is dominated by the solenoidal mode of the velocity field. The different behaviours of cascades of temperature and entropy are partly explained by the geometrical properties of SGS fluxes. Moreover, the different effects of local compressibility on the SGS fluxes of temperature and entropy are investigated by conditional averaging with respect to the filtered dilatation, demonstrating that the effect of compressibility on the cascade of temperature is much stronger than on the cascade of entropy.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2019.116</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Cascades ; Compressibility ; Compressibility effects ; Computational fluid dynamics ; Computer simulation ; Constants ; Decomposition ; Energy ; Entropy ; Fluctuations ; Fluxes ; Heat conductivity ; JFM Papers ; Numerical analysis ; Pressure ; Reynolds number ; Scaling ; Simulation ; Spectra ; Star & galaxy formation ; Temperature distribution ; Temperature fields ; Turbulence ; Velocity ; Velocity distribution ; Viscosity</subject><ispartof>Journal of fluid mechanics, 2019-05, Vol.867, p.195-215</ispartof><rights>2019 Cambridge University Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c302t-6c90b54026bff0dec462cd2193cc89c67fe4bc1c10d47cac02fb3903b8b3da373</citedby><cites>FETCH-LOGICAL-c302t-6c90b54026bff0dec462cd2193cc89c67fe4bc1c10d47cac02fb3903b8b3da373</cites><orcidid>0000-0003-4276-0051 ; 0000-0001-5101-7791 ; 0000-0001-5891-9579</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112019001162/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,27901,27902,55603</link.rule.ids></links><search><creatorcontrib>Wang, Jianchun</creatorcontrib><creatorcontrib>Wan, Minping</creatorcontrib><creatorcontrib>Chen, Song</creatorcontrib><creatorcontrib>Xie, Chenyue</creatorcontrib><creatorcontrib>Wang, Lian-Ping</creatorcontrib><creatorcontrib>Chen, Shiyi</creatorcontrib><title>Cascades of temperature and entropy fluctuations in compressible turbulence</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>Cascades of temperature and entropy fluctuations are studied by numerical simulations of stationary three-dimensional compressible turbulence with a heat source. The fluctuation spectra of velocity, compressible velocity component, density and pressure exhibit the
$-5/3$
scaling in an inertial range. The strong acoustic equilibrium relation between spectra of the compressible velocity component and pressure is observed. The
$-5/3$
scaling behaviour is also identified for the fluctuation spectra of temperature and entropy, with the Obukhov–Corrsin constants close to that of a passive scalar spectrum. It is shown by Kovasznay decomposition that the dynamics of the temperature field is dominated by the entropic mode. The average subgrid-scale (SGS) fluxes of temperature and entropy normalized by the total dissipation rates are close to 1 in the inertial range. The cascade of temperature is dominated by the compressible mode of the velocity field, indicating that the theory of a passive scalar in incompressible turbulence is not suitable to describe the inter-scale transfer of temperature in compressible turbulence. In contrast, the cascade of entropy is dominated by the solenoidal mode of the velocity field. The different behaviours of cascades of temperature and entropy are partly explained by the geometrical properties of SGS fluxes. Moreover, the different effects of local compressibility on the SGS fluxes of temperature and entropy are investigated by conditional averaging with respect to the filtered dilatation, demonstrating that the effect of compressibility on the cascade of temperature is much stronger than on the cascade of entropy.</description><subject>Cascades</subject><subject>Compressibility</subject><subject>Compressibility effects</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Constants</subject><subject>Decomposition</subject><subject>Energy</subject><subject>Entropy</subject><subject>Fluctuations</subject><subject>Fluxes</subject><subject>Heat conductivity</subject><subject>JFM Papers</subject><subject>Numerical analysis</subject><subject>Pressure</subject><subject>Reynolds number</subject><subject>Scaling</subject><subject>Simulation</subject><subject>Spectra</subject><subject>Star & galaxy formation</subject><subject>Temperature distribution</subject><subject>Temperature fields</subject><subject>Turbulence</subject><subject>Velocity</subject><subject>Velocity distribution</subject><subject>Viscosity</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNptkEtLAzEUhYMoWKs7f0DArTPeJNOZZinFFxbc6Dokd25kyrxMMov-e6e04EY4cDffPQc-xm4F5AJE9bDzXS5B6FyI8owtRFHqrCqL1TlbAEiZCSHhkl3FuAMQCnS1YO8bG9HWFPngeaJupGDTFIjbvubUpzCMe-7bCdNkUzP0kTc9x6EbA8XYuJb4TLuppR7pml1420a6Od0l-3p--ty8ZtuPl7fN4zZDBTJlJWpwqwJk6byHmrAoJdZSaIW41lhWngqHAgXURYUWQXqnNCi3dqq2qlJLdnfsHcPwM1FMZjdMoZ8njVQrBRWoOUt2f6QwDDEG8mYMTWfD3ggwB11m1mUOusysa8bzE247F5r6m_5a_334BfFgbeo</recordid><startdate>20190525</startdate><enddate>20190525</enddate><creator>Wang, Jianchun</creator><creator>Wan, Minping</creator><creator>Chen, Song</creator><creator>Xie, Chenyue</creator><creator>Wang, Lian-Ping</creator><creator>Chen, Shiyi</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0003-4276-0051</orcidid><orcidid>https://orcid.org/0000-0001-5101-7791</orcidid><orcidid>https://orcid.org/0000-0001-5891-9579</orcidid></search><sort><creationdate>20190525</creationdate><title>Cascades of temperature and entropy fluctuations in compressible turbulence</title><author>Wang, Jianchun ; Wan, Minping ; Chen, Song ; Xie, Chenyue ; Wang, Lian-Ping ; Chen, Shiyi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c302t-6c90b54026bff0dec462cd2193cc89c67fe4bc1c10d47cac02fb3903b8b3da373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Cascades</topic><topic>Compressibility</topic><topic>Compressibility effects</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Constants</topic><topic>Decomposition</topic><topic>Energy</topic><topic>Entropy</topic><topic>Fluctuations</topic><topic>Fluxes</topic><topic>Heat conductivity</topic><topic>JFM Papers</topic><topic>Numerical analysis</topic><topic>Pressure</topic><topic>Reynolds number</topic><topic>Scaling</topic><topic>Simulation</topic><topic>Spectra</topic><topic>Star & galaxy formation</topic><topic>Temperature distribution</topic><topic>Temperature fields</topic><topic>Turbulence</topic><topic>Velocity</topic><topic>Velocity distribution</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Jianchun</creatorcontrib><creatorcontrib>Wan, Minping</creatorcontrib><creatorcontrib>Chen, Song</creatorcontrib><creatorcontrib>Xie, Chenyue</creatorcontrib><creatorcontrib>Wang, Lian-Ping</creatorcontrib><creatorcontrib>Chen, Shiyi</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Jianchun</au><au>Wan, Minping</au><au>Chen, Song</au><au>Xie, Chenyue</au><au>Wang, Lian-Ping</au><au>Chen, Shiyi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cascades of temperature and entropy fluctuations in compressible turbulence</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2019-05-25</date><risdate>2019</risdate><volume>867</volume><spage>195</spage><epage>215</epage><pages>195-215</pages><issn>0022-1120</issn><eissn>1469-7645</eissn><abstract>Cascades of temperature and entropy fluctuations are studied by numerical simulations of stationary three-dimensional compressible turbulence with a heat source. The fluctuation spectra of velocity, compressible velocity component, density and pressure exhibit the
$-5/3$
scaling in an inertial range. The strong acoustic equilibrium relation between spectra of the compressible velocity component and pressure is observed. The
$-5/3$
scaling behaviour is also identified for the fluctuation spectra of temperature and entropy, with the Obukhov–Corrsin constants close to that of a passive scalar spectrum. It is shown by Kovasznay decomposition that the dynamics of the temperature field is dominated by the entropic mode. The average subgrid-scale (SGS) fluxes of temperature and entropy normalized by the total dissipation rates are close to 1 in the inertial range. The cascade of temperature is dominated by the compressible mode of the velocity field, indicating that the theory of a passive scalar in incompressible turbulence is not suitable to describe the inter-scale transfer of temperature in compressible turbulence. In contrast, the cascade of entropy is dominated by the solenoidal mode of the velocity field. The different behaviours of cascades of temperature and entropy are partly explained by the geometrical properties of SGS fluxes. Moreover, the different effects of local compressibility on the SGS fluxes of temperature and entropy are investigated by conditional averaging with respect to the filtered dilatation, demonstrating that the effect of compressibility on the cascade of temperature is much stronger than on the cascade of entropy.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2019.116</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0003-4276-0051</orcidid><orcidid>https://orcid.org/0000-0001-5101-7791</orcidid><orcidid>https://orcid.org/0000-0001-5891-9579</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1120 |
ispartof | Journal of fluid mechanics, 2019-05, Vol.867, p.195-215 |
issn | 0022-1120 1469-7645 |
language | eng |
recordid | cdi_proquest_journals_2353070370 |
source | Cambridge Journals |
subjects | Cascades Compressibility Compressibility effects Computational fluid dynamics Computer simulation Constants Decomposition Energy Entropy Fluctuations Fluxes Heat conductivity JFM Papers Numerical analysis Pressure Reynolds number Scaling Simulation Spectra Star & galaxy formation Temperature distribution Temperature fields Turbulence Velocity Velocity distribution Viscosity |
title | Cascades of temperature and entropy fluctuations in compressible turbulence |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T16%3A47%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cascades%20of%20temperature%20and%20entropy%20fluctuations%20in%20compressible%20turbulence&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Wang,%20Jianchun&rft.date=2019-05-25&rft.volume=867&rft.spage=195&rft.epage=215&rft.pages=195-215&rft.issn=0022-1120&rft.eissn=1469-7645&rft_id=info:doi/10.1017/jfm.2019.116&rft_dat=%3Cproquest_cross%3E2353070370%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2353070370&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2019_116&rfr_iscdi=true |