Two completely explicit and unconditionally convergent Fourier pseudo-spectral methods for solving the nonlinear Schrödinger equation

This paper aims to construct and analyze two new Fourier pseudo-spectral (FPS) methods for the general nonlinear Schrödinger (NLS) equation. The two FPS methods have two merits: unconditional convergence and complete explicitness in the practical computation. Further more, by introducing a modified...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational physics 2020-03, Vol.404, p.109116, Article 109116
Hauptverfasser: Wang, Tingchun, Wang, Jialing, Guo, Boling
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 109116
container_title Journal of computational physics
container_volume 404
creator Wang, Tingchun
Wang, Jialing
Guo, Boling
description This paper aims to construct and analyze two new Fourier pseudo-spectral (FPS) methods for the general nonlinear Schrödinger (NLS) equation. The two FPS methods have two merits: unconditional convergence and complete explicitness in the practical computation. Further more, by introducing a modified mass functional and a modified energy functional, the two FPS methods are proved to preserve the total mass and energy in the discrete sense. Besides the standard energy method, the key techniques used in our numerical analysis are a mathematical induction argument and a lifting technique. Without any restriction on the grid ratio and initial value, we establish the optimal error estimate of the two FPS methods for solving the general NLS equation, while previous work just is valid for the cubic NLS equation and requires small initial value for the focusing case. These two FPS methods are proved to be spectrally accurate in space and second-order accurate in time, respectively. The analysis framework can be used to prove the unconditional convergence of many other Fourier pseudo-spectral methods for solving the NLS-type equations. We investigate the effect of the nonlinear term on the progression simulation of the plane wave, the conservation of the invariants and the effect of initial data on the blow-up solution via different parameters. Numerical results are reported to show the accuracy and efficiency of the proposed methods.
doi_str_mv 10.1016/j.jcp.2019.109116
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2353045183</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021999119308216</els_id><sourcerecordid>2353045183</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-c5d02eb4626e24b5c3c643ceb3298a3d33a30a36025a4ffb9daaa5477280abae3</originalsourceid><addsrcrecordid>eNp9kE1OwzAQhS0EEqVwAHaWWKf4J0kTsUKIP6kSC8racuwJdZTawXYKXIAjcQEuhquwZjUzevOeZj6EzilZUELLy27RqWHBCK3TXFNaHqBZakjGlrQ8RDNCGM3quqbH6CSEjhBSFXk1Q1_rd4eV2w49ROg_MXwMvVEmYmk1Hq1yVptonJV9EtO0A_8KNuI7N3oDHg8BRu2yMICKXvZ4C3HjdMCt8zi4fmfsK44bwNbZ3liQHj-rjf_51klIdngb5T7-FB21sg9w9lfn6OXudn3zkK2e7h9vrleZ4qyImSo0YdDkJSuB5U2huCpzrqDhrK4k15xLTiQvCStk3rZNraWURb5csorIRgKfo4spd_DubYQQRZceSd8FwXjBSV7QiqctOm0p70Lw0IrBm630n4ISscctOpFwiz1uMeFOnqvJA-n8XUIjgjJgFWjjExuhnfnH_QvxiYy6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2353045183</pqid></control><display><type>article</type><title>Two completely explicit and unconditionally convergent Fourier pseudo-spectral methods for solving the nonlinear Schrödinger equation</title><source>Elsevier ScienceDirect Journals</source><creator>Wang, Tingchun ; Wang, Jialing ; Guo, Boling</creator><creatorcontrib>Wang, Tingchun ; Wang, Jialing ; Guo, Boling</creatorcontrib><description>This paper aims to construct and analyze two new Fourier pseudo-spectral (FPS) methods for the general nonlinear Schrödinger (NLS) equation. The two FPS methods have two merits: unconditional convergence and complete explicitness in the practical computation. Further more, by introducing a modified mass functional and a modified energy functional, the two FPS methods are proved to preserve the total mass and energy in the discrete sense. Besides the standard energy method, the key techniques used in our numerical analysis are a mathematical induction argument and a lifting technique. Without any restriction on the grid ratio and initial value, we establish the optimal error estimate of the two FPS methods for solving the general NLS equation, while previous work just is valid for the cubic NLS equation and requires small initial value for the focusing case. These two FPS methods are proved to be spectrally accurate in space and second-order accurate in time, respectively. The analysis framework can be used to prove the unconditional convergence of many other Fourier pseudo-spectral methods for solving the NLS-type equations. We investigate the effect of the nonlinear term on the progression simulation of the plane wave, the conservation of the invariants and the effect of initial data on the blow-up solution via different parameters. Numerical results are reported to show the accuracy and efficiency of the proposed methods.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/j.jcp.2019.109116</identifier><language>eng</language><publisher>Cambridge: Elsevier Inc</publisher><subject>Computational physics ; Computer simulation ; Conservation laws ; Convergence ; Explicit computation ; Fourier pseudo-spectral method ; Nonlinear Schrödinger equation ; Numerical analysis ; Plane waves ; Schrodinger equation ; Spectra ; Spectral methods ; Unconditional convergence</subject><ispartof>Journal of computational physics, 2020-03, Vol.404, p.109116, Article 109116</ispartof><rights>2019 Elsevier Inc.</rights><rights>Copyright Elsevier Science Ltd. Mar 1, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-c5d02eb4626e24b5c3c643ceb3298a3d33a30a36025a4ffb9daaa5477280abae3</citedby><cites>FETCH-LOGICAL-c325t-c5d02eb4626e24b5c3c643ceb3298a3d33a30a36025a4ffb9daaa5477280abae3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jcp.2019.109116$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids></links><search><creatorcontrib>Wang, Tingchun</creatorcontrib><creatorcontrib>Wang, Jialing</creatorcontrib><creatorcontrib>Guo, Boling</creatorcontrib><title>Two completely explicit and unconditionally convergent Fourier pseudo-spectral methods for solving the nonlinear Schrödinger equation</title><title>Journal of computational physics</title><description>This paper aims to construct and analyze two new Fourier pseudo-spectral (FPS) methods for the general nonlinear Schrödinger (NLS) equation. The two FPS methods have two merits: unconditional convergence and complete explicitness in the practical computation. Further more, by introducing a modified mass functional and a modified energy functional, the two FPS methods are proved to preserve the total mass and energy in the discrete sense. Besides the standard energy method, the key techniques used in our numerical analysis are a mathematical induction argument and a lifting technique. Without any restriction on the grid ratio and initial value, we establish the optimal error estimate of the two FPS methods for solving the general NLS equation, while previous work just is valid for the cubic NLS equation and requires small initial value for the focusing case. These two FPS methods are proved to be spectrally accurate in space and second-order accurate in time, respectively. The analysis framework can be used to prove the unconditional convergence of many other Fourier pseudo-spectral methods for solving the NLS-type equations. We investigate the effect of the nonlinear term on the progression simulation of the plane wave, the conservation of the invariants and the effect of initial data on the blow-up solution via different parameters. Numerical results are reported to show the accuracy and efficiency of the proposed methods.</description><subject>Computational physics</subject><subject>Computer simulation</subject><subject>Conservation laws</subject><subject>Convergence</subject><subject>Explicit computation</subject><subject>Fourier pseudo-spectral method</subject><subject>Nonlinear Schrödinger equation</subject><subject>Numerical analysis</subject><subject>Plane waves</subject><subject>Schrodinger equation</subject><subject>Spectra</subject><subject>Spectral methods</subject><subject>Unconditional convergence</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE1OwzAQhS0EEqVwAHaWWKf4J0kTsUKIP6kSC8racuwJdZTawXYKXIAjcQEuhquwZjUzevOeZj6EzilZUELLy27RqWHBCK3TXFNaHqBZakjGlrQ8RDNCGM3quqbH6CSEjhBSFXk1Q1_rd4eV2w49ROg_MXwMvVEmYmk1Hq1yVptonJV9EtO0A_8KNuI7N3oDHg8BRu2yMICKXvZ4C3HjdMCt8zi4fmfsK44bwNbZ3liQHj-rjf_51klIdngb5T7-FB21sg9w9lfn6OXudn3zkK2e7h9vrleZ4qyImSo0YdDkJSuB5U2huCpzrqDhrK4k15xLTiQvCStk3rZNraWURb5csorIRgKfo4spd_DubYQQRZceSd8FwXjBSV7QiqctOm0p70Lw0IrBm630n4ISscctOpFwiz1uMeFOnqvJA-n8XUIjgjJgFWjjExuhnfnH_QvxiYy6</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Wang, Tingchun</creator><creator>Wang, Jialing</creator><creator>Guo, Boling</creator><general>Elsevier Inc</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20200301</creationdate><title>Two completely explicit and unconditionally convergent Fourier pseudo-spectral methods for solving the nonlinear Schrödinger equation</title><author>Wang, Tingchun ; Wang, Jialing ; Guo, Boling</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-c5d02eb4626e24b5c3c643ceb3298a3d33a30a36025a4ffb9daaa5477280abae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Computational physics</topic><topic>Computer simulation</topic><topic>Conservation laws</topic><topic>Convergence</topic><topic>Explicit computation</topic><topic>Fourier pseudo-spectral method</topic><topic>Nonlinear Schrödinger equation</topic><topic>Numerical analysis</topic><topic>Plane waves</topic><topic>Schrodinger equation</topic><topic>Spectra</topic><topic>Spectral methods</topic><topic>Unconditional convergence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Tingchun</creatorcontrib><creatorcontrib>Wang, Jialing</creatorcontrib><creatorcontrib>Guo, Boling</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Tingchun</au><au>Wang, Jialing</au><au>Guo, Boling</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Two completely explicit and unconditionally convergent Fourier pseudo-spectral methods for solving the nonlinear Schrödinger equation</atitle><jtitle>Journal of computational physics</jtitle><date>2020-03-01</date><risdate>2020</risdate><volume>404</volume><spage>109116</spage><pages>109116-</pages><artnum>109116</artnum><issn>0021-9991</issn><eissn>1090-2716</eissn><abstract>This paper aims to construct and analyze two new Fourier pseudo-spectral (FPS) methods for the general nonlinear Schrödinger (NLS) equation. The two FPS methods have two merits: unconditional convergence and complete explicitness in the practical computation. Further more, by introducing a modified mass functional and a modified energy functional, the two FPS methods are proved to preserve the total mass and energy in the discrete sense. Besides the standard energy method, the key techniques used in our numerical analysis are a mathematical induction argument and a lifting technique. Without any restriction on the grid ratio and initial value, we establish the optimal error estimate of the two FPS methods for solving the general NLS equation, while previous work just is valid for the cubic NLS equation and requires small initial value for the focusing case. These two FPS methods are proved to be spectrally accurate in space and second-order accurate in time, respectively. The analysis framework can be used to prove the unconditional convergence of many other Fourier pseudo-spectral methods for solving the NLS-type equations. We investigate the effect of the nonlinear term on the progression simulation of the plane wave, the conservation of the invariants and the effect of initial data on the blow-up solution via different parameters. Numerical results are reported to show the accuracy and efficiency of the proposed methods.</abstract><cop>Cambridge</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jcp.2019.109116</doi></addata></record>
fulltext fulltext
identifier ISSN: 0021-9991
ispartof Journal of computational physics, 2020-03, Vol.404, p.109116, Article 109116
issn 0021-9991
1090-2716
language eng
recordid cdi_proquest_journals_2353045183
source Elsevier ScienceDirect Journals
subjects Computational physics
Computer simulation
Conservation laws
Convergence
Explicit computation
Fourier pseudo-spectral method
Nonlinear Schrödinger equation
Numerical analysis
Plane waves
Schrodinger equation
Spectra
Spectral methods
Unconditional convergence
title Two completely explicit and unconditionally convergent Fourier pseudo-spectral methods for solving the nonlinear Schrödinger equation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T15%3A38%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Two%20completely%20explicit%20and%20unconditionally%20convergent%20Fourier%20pseudo-spectral%20methods%20for%20solving%20the%20nonlinear%20Schr%C3%B6dinger%20equation&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Wang,%20Tingchun&rft.date=2020-03-01&rft.volume=404&rft.spage=109116&rft.pages=109116-&rft.artnum=109116&rft.issn=0021-9991&rft.eissn=1090-2716&rft_id=info:doi/10.1016/j.jcp.2019.109116&rft_dat=%3Cproquest_cross%3E2353045183%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2353045183&rft_id=info:pmid/&rft_els_id=S0021999119308216&rfr_iscdi=true