A moving immersed boundary method for simulating particle interactions at fluid-fluid interfaces
•A new velocity reconstruction scheme for discrete-forcing Immersed Boundary Methods (IBMs) is presented.•A method of prescribing contact lines on the proposed IBM in a Volume-of-Fluid (VOF) framework is proposed.•Validation against experimental and theoretical results from the literature for single...
Gespeichert in:
Veröffentlicht in: | Journal of computational physics 2020-02, Vol.402, p.109089, Article 109089 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 109089 |
container_title | Journal of computational physics |
container_volume | 402 |
creator | O'Brien, Adam Bussmann, Markus |
description | •A new velocity reconstruction scheme for discrete-forcing Immersed Boundary Methods (IBMs) is presented.•A method of prescribing contact lines on the proposed IBM in a Volume-of-Fluid (VOF) framework is proposed.•Validation against experimental and theoretical results from the literature for single and multiphase flows is performed.•The ability of the method to model fluid-structure interaction problems involving capillary forces is demonstrated.•An application with multiple moving bodies is shown.
A sharp interface immersed boundary method coupled to a volume-of-fluid method and suitable for moving boundary problems is presented. A discrete-forcing approach is used, in which the velocity reconstruction in the near-boundary region is performed using piece-wise continuous bi-quadratic functions. A method is proposed for coupling the volume-of-fluid equation to the immersed boundary method that allows for the boundary to move, as well as appropriate boundary conditions for imposing contact angles. Numerical simulations of both static and moving boundary problems are performed, which demonstrate the efficacy of the proposed method. Validation is performed by comparing numerical results with experimental data and theoretical models available in the literature. |
doi_str_mv | 10.1016/j.jcp.2019.109089 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2353044275</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021999119307946</els_id><sourcerecordid>2353044275</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-8b926d1e1582ffb30a17f81072404cbfd7172b52ee941200751a9750096ecf5e3</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwAewssU4ZO3ESi1VV8ZIqsYG1cZwxOGriYjuV-HtSwprNPDT3ztiHkGsGKwasvO1WndmvODA59RJqeUIWxyLjFStPyQKAs0xKyc7JRYwdANSiqBfkfU17f3DDB3V9jyFiSxs_Dq0O37TH9Olban2g0fXjTqejbq9DcmaH1A0JgzbJ-SFSnajdja7NfuM8s9pgvCRnVu8iXv3lJXl7uH_dPGXbl8fnzXqbmZyLlNWN5GXLkImaW9vkoFllawYVL6AwjW0rVvFGcERZMA5QCaZlJQBkicYKzJfkZt67D_5rxJhU58cwTCcVz0UORcErManYrDLBxxjQqn1w_fRZxUAdQapOTSDVEaSaQU6eu9mD0_MPDoOKxuFgsHUBTVKtd_-4fwBYdnub</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2353044275</pqid></control><display><type>article</type><title>A moving immersed boundary method for simulating particle interactions at fluid-fluid interfaces</title><source>Elsevier ScienceDirect Journals</source><creator>O'Brien, Adam ; Bussmann, Markus</creator><creatorcontrib>O'Brien, Adam ; Bussmann, Markus</creatorcontrib><description>•A new velocity reconstruction scheme for discrete-forcing Immersed Boundary Methods (IBMs) is presented.•A method of prescribing contact lines on the proposed IBM in a Volume-of-Fluid (VOF) framework is proposed.•Validation against experimental and theoretical results from the literature for single and multiphase flows is performed.•The ability of the method to model fluid-structure interaction problems involving capillary forces is demonstrated.•An application with multiple moving bodies is shown.
A sharp interface immersed boundary method coupled to a volume-of-fluid method and suitable for moving boundary problems is presented. A discrete-forcing approach is used, in which the velocity reconstruction in the near-boundary region is performed using piece-wise continuous bi-quadratic functions. A method is proposed for coupling the volume-of-fluid equation to the immersed boundary method that allows for the boundary to move, as well as appropriate boundary conditions for imposing contact angles. Numerical simulations of both static and moving boundary problems are performed, which demonstrate the efficacy of the proposed method. Validation is performed by comparing numerical results with experimental data and theoretical models available in the literature.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/j.jcp.2019.109089</identifier><language>eng</language><publisher>Cambridge: Elsevier Inc</publisher><subject>Boundary conditions ; Computational physics ; Computer simulation ; Contact angle ; Contact lines ; Continuity (mathematics) ; Immersed boundary method ; Mathematical models ; Moving boundary ; Particle interactions ; Quadratic equations ; Surface tension ; Volume-of-fluid</subject><ispartof>Journal of computational physics, 2020-02, Vol.402, p.109089, Article 109089</ispartof><rights>2019 Elsevier Inc.</rights><rights>Copyright Elsevier Science Ltd. Feb 1, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-8b926d1e1582ffb30a17f81072404cbfd7172b52ee941200751a9750096ecf5e3</citedby><cites>FETCH-LOGICAL-c325t-8b926d1e1582ffb30a17f81072404cbfd7172b52ee941200751a9750096ecf5e3</cites><orcidid>0000-0002-4117-6710 ; 0000-0001-7639-661X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021999119307946$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>O'Brien, Adam</creatorcontrib><creatorcontrib>Bussmann, Markus</creatorcontrib><title>A moving immersed boundary method for simulating particle interactions at fluid-fluid interfaces</title><title>Journal of computational physics</title><description>•A new velocity reconstruction scheme for discrete-forcing Immersed Boundary Methods (IBMs) is presented.•A method of prescribing contact lines on the proposed IBM in a Volume-of-Fluid (VOF) framework is proposed.•Validation against experimental and theoretical results from the literature for single and multiphase flows is performed.•The ability of the method to model fluid-structure interaction problems involving capillary forces is demonstrated.•An application with multiple moving bodies is shown.
A sharp interface immersed boundary method coupled to a volume-of-fluid method and suitable for moving boundary problems is presented. A discrete-forcing approach is used, in which the velocity reconstruction in the near-boundary region is performed using piece-wise continuous bi-quadratic functions. A method is proposed for coupling the volume-of-fluid equation to the immersed boundary method that allows for the boundary to move, as well as appropriate boundary conditions for imposing contact angles. Numerical simulations of both static and moving boundary problems are performed, which demonstrate the efficacy of the proposed method. Validation is performed by comparing numerical results with experimental data and theoretical models available in the literature.</description><subject>Boundary conditions</subject><subject>Computational physics</subject><subject>Computer simulation</subject><subject>Contact angle</subject><subject>Contact lines</subject><subject>Continuity (mathematics)</subject><subject>Immersed boundary method</subject><subject>Mathematical models</subject><subject>Moving boundary</subject><subject>Particle interactions</subject><subject>Quadratic equations</subject><subject>Surface tension</subject><subject>Volume-of-fluid</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqXwAewssU4ZO3ESi1VV8ZIqsYG1cZwxOGriYjuV-HtSwprNPDT3ztiHkGsGKwasvO1WndmvODA59RJqeUIWxyLjFStPyQKAs0xKyc7JRYwdANSiqBfkfU17f3DDB3V9jyFiSxs_Dq0O37TH9Olban2g0fXjTqejbq9DcmaH1A0JgzbJ-SFSnajdja7NfuM8s9pgvCRnVu8iXv3lJXl7uH_dPGXbl8fnzXqbmZyLlNWN5GXLkImaW9vkoFllawYVL6AwjW0rVvFGcERZMA5QCaZlJQBkicYKzJfkZt67D_5rxJhU58cwTCcVz0UORcErManYrDLBxxjQqn1w_fRZxUAdQapOTSDVEaSaQU6eu9mD0_MPDoOKxuFgsHUBTVKtd_-4fwBYdnub</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>O'Brien, Adam</creator><creator>Bussmann, Markus</creator><general>Elsevier Inc</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-4117-6710</orcidid><orcidid>https://orcid.org/0000-0001-7639-661X</orcidid></search><sort><creationdate>20200201</creationdate><title>A moving immersed boundary method for simulating particle interactions at fluid-fluid interfaces</title><author>O'Brien, Adam ; Bussmann, Markus</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-8b926d1e1582ffb30a17f81072404cbfd7172b52ee941200751a9750096ecf5e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Boundary conditions</topic><topic>Computational physics</topic><topic>Computer simulation</topic><topic>Contact angle</topic><topic>Contact lines</topic><topic>Continuity (mathematics)</topic><topic>Immersed boundary method</topic><topic>Mathematical models</topic><topic>Moving boundary</topic><topic>Particle interactions</topic><topic>Quadratic equations</topic><topic>Surface tension</topic><topic>Volume-of-fluid</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>O'Brien, Adam</creatorcontrib><creatorcontrib>Bussmann, Markus</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>O'Brien, Adam</au><au>Bussmann, Markus</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A moving immersed boundary method for simulating particle interactions at fluid-fluid interfaces</atitle><jtitle>Journal of computational physics</jtitle><date>2020-02-01</date><risdate>2020</risdate><volume>402</volume><spage>109089</spage><pages>109089-</pages><artnum>109089</artnum><issn>0021-9991</issn><eissn>1090-2716</eissn><abstract>•A new velocity reconstruction scheme for discrete-forcing Immersed Boundary Methods (IBMs) is presented.•A method of prescribing contact lines on the proposed IBM in a Volume-of-Fluid (VOF) framework is proposed.•Validation against experimental and theoretical results from the literature for single and multiphase flows is performed.•The ability of the method to model fluid-structure interaction problems involving capillary forces is demonstrated.•An application with multiple moving bodies is shown.
A sharp interface immersed boundary method coupled to a volume-of-fluid method and suitable for moving boundary problems is presented. A discrete-forcing approach is used, in which the velocity reconstruction in the near-boundary region is performed using piece-wise continuous bi-quadratic functions. A method is proposed for coupling the volume-of-fluid equation to the immersed boundary method that allows for the boundary to move, as well as appropriate boundary conditions for imposing contact angles. Numerical simulations of both static and moving boundary problems are performed, which demonstrate the efficacy of the proposed method. Validation is performed by comparing numerical results with experimental data and theoretical models available in the literature.</abstract><cop>Cambridge</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jcp.2019.109089</doi><orcidid>https://orcid.org/0000-0002-4117-6710</orcidid><orcidid>https://orcid.org/0000-0001-7639-661X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9991 |
ispartof | Journal of computational physics, 2020-02, Vol.402, p.109089, Article 109089 |
issn | 0021-9991 1090-2716 |
language | eng |
recordid | cdi_proquest_journals_2353044275 |
source | Elsevier ScienceDirect Journals |
subjects | Boundary conditions Computational physics Computer simulation Contact angle Contact lines Continuity (mathematics) Immersed boundary method Mathematical models Moving boundary Particle interactions Quadratic equations Surface tension Volume-of-fluid |
title | A moving immersed boundary method for simulating particle interactions at fluid-fluid interfaces |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T10%3A03%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20moving%20immersed%20boundary%20method%20for%20simulating%20particle%20interactions%20at%20fluid-fluid%20interfaces&rft.jtitle=Journal%20of%20computational%20physics&rft.au=O'Brien,%20Adam&rft.date=2020-02-01&rft.volume=402&rft.spage=109089&rft.pages=109089-&rft.artnum=109089&rft.issn=0021-9991&rft.eissn=1090-2716&rft_id=info:doi/10.1016/j.jcp.2019.109089&rft_dat=%3Cproquest_cross%3E2353044275%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2353044275&rft_id=info:pmid/&rft_els_id=S0021999119307946&rfr_iscdi=true |