Experimental investigation of the wave-induced motion of and force distribution along a flexible stem
The work presents an experimental investigation into the motion of and hydrodynamic forces along a single flexible stem in regular waves. The experiment covers a large range in relevant non-dimensional parameters: the drag-to-stiffness ratio $CaL\in [0.003,3.8]$ , the inertia-to-stiffness ratio $CaL...
Gespeichert in:
Veröffentlicht in: | Journal of fluid mechanics 2019-12, Vol.880, p.1036-1069 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1069 |
---|---|
container_issue | |
container_start_page | 1036 |
container_title | Journal of fluid mechanics |
container_volume | 880 |
creator | Jacobsen, Niels G. Bakker, Wout Uijttewaal, Wim S. J. Uittenbogaard, Rob |
description | The work presents an experimental investigation into the motion of and hydrodynamic forces along a single flexible stem in regular waves. The experiment covers a large range in relevant non-dimensional parameters: the drag-to-stiffness ratio
$CaL\in [0.003,3.8]$
, the inertia-to-stiffness ratio
$CaL/KC\in [4\times 10^{-5},14.8]$
, the Keulegan–Carpenter number
$KC\in [3.8,145]$
and the Reynolds number
$Re\in [230,2900]$
. The two first parameters relate to the response of the stem in waves and thus account for material properties, while the two last parameters are relevant for hydrodynamic forces on the stem. The displacement of the stem was captured with a digital video camera and the displacement along the stem was captured for every 2.5 mm at 25 Hz. This unique laboratory data set allowed for the following analyses: (i) Determination of the relevant non-dimensional parameter to predict the stem motion and shape. (ii) A direct comparison between the measured force for mimics of two lengths (0.15 m and 0.30 m) illustrating the force reduction potential for flexible mimics. (iii) Direct evaluation of the average force coefficients
$C_{D}$
(drag) and
$C_{M}$
(inertia) for the flexible stems. (iv) The distributed external hydrodynamic loading and the internal shear forces were estimated from the laboratory experiments. The distribution of the shear force helped to understand the breakage mechanisms of flexible stems. (v) A linkage between phase lags and internal shear forces was suggested. The data set is considered valuable as validation material for numerical models of stem motion in waves. |
doi_str_mv | 10.1017/jfm.2019.739 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2353005195</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2353005195</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-ac922bc9555eaccff5d23856647f6989a8feba16b4c28eff6a0b6d613965a5f73</originalsourceid><addsrcrecordid>eNo10MtOwzAQBVALgUQp7PgAS2xJ8SN24iWqykOqxAbWluOMi6skLrZTyt8TKKxmca9mNAeha0oWlNDqbuv6BSNULSquTtCMllIVlSzFKZoRwlhBKSPn6CKlLSGUE1XNEKwOO4i-hyGbDvthDyn7jck-DDg4nN8Bf5o9FH5oRwst7sN_ZIYWuxAt4NanHH0z_iamC8MGG-w6OPimA5wy9JfozJkuwdXfnKO3h9Xr8qlYvzw-L-_XheUVzYWxirHGKiEEGGudEy3jtZCyrJxUtTK1g8ZQ2ZSW1eCcNKSRraRcSWGEq_gc3Rz37mL4GKdX9DaMcZhOasYFJ0RQJabW7bFlY0gpgtO7ScDEL02J_oHUE6T-gdQTJP8Gzf9oJQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2353005195</pqid></control><display><type>article</type><title>Experimental investigation of the wave-induced motion of and force distribution along a flexible stem</title><source>Cambridge University Press Journals Complete</source><creator>Jacobsen, Niels G. ; Bakker, Wout ; Uijttewaal, Wim S. J. ; Uittenbogaard, Rob</creator><creatorcontrib>Jacobsen, Niels G. ; Bakker, Wout ; Uijttewaal, Wim S. J. ; Uittenbogaard, Rob</creatorcontrib><description>The work presents an experimental investigation into the motion of and hydrodynamic forces along a single flexible stem in regular waves. The experiment covers a large range in relevant non-dimensional parameters: the drag-to-stiffness ratio
$CaL\in [0.003,3.8]$
, the inertia-to-stiffness ratio
$CaL/KC\in [4\times 10^{-5},14.8]$
, the Keulegan–Carpenter number
$KC\in [3.8,145]$
and the Reynolds number
$Re\in [230,2900]$
. The two first parameters relate to the response of the stem in waves and thus account for material properties, while the two last parameters are relevant for hydrodynamic forces on the stem. The displacement of the stem was captured with a digital video camera and the displacement along the stem was captured for every 2.5 mm at 25 Hz. This unique laboratory data set allowed for the following analyses: (i) Determination of the relevant non-dimensional parameter to predict the stem motion and shape. (ii) A direct comparison between the measured force for mimics of two lengths (0.15 m and 0.30 m) illustrating the force reduction potential for flexible mimics. (iii) Direct evaluation of the average force coefficients
$C_{D}$
(drag) and
$C_{M}$
(inertia) for the flexible stems. (iv) The distributed external hydrodynamic loading and the internal shear forces were estimated from the laboratory experiments. The distribution of the shear force helped to understand the breakage mechanisms of flexible stems. (v) A linkage between phase lags and internal shear forces was suggested. The data set is considered valuable as validation material for numerical models of stem motion in waves.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2019.739</identifier><language>eng</language><publisher>Cambridge: Cambridge University Press</publisher><subject>Accuracy ; Coefficients ; Datasets ; Displacement ; Distribution ; Drag ; Experiments ; Fluid flow ; Force distribution ; Forces (mechanics) ; Hydrodynamics ; Inertia ; Laboratories ; Material properties ; Mathematical models ; Movement ; Numerical models ; Parameters ; Regular waves ; Reynolds number ; Sediment transport ; Shear ; Shear forces ; Stems ; Stiffness ; Stress concentration ; Vegetation ; Velocity</subject><ispartof>Journal of fluid mechanics, 2019-12, Vol.880, p.1036-1069</ispartof><rights>2019 Cambridge University Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c371t-ac922bc9555eaccff5d23856647f6989a8feba16b4c28eff6a0b6d613965a5f73</citedby><cites>FETCH-LOGICAL-c371t-ac922bc9555eaccff5d23856647f6989a8feba16b4c28eff6a0b6d613965a5f73</cites><orcidid>0000-0003-2662-6282</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Jacobsen, Niels G.</creatorcontrib><creatorcontrib>Bakker, Wout</creatorcontrib><creatorcontrib>Uijttewaal, Wim S. J.</creatorcontrib><creatorcontrib>Uittenbogaard, Rob</creatorcontrib><title>Experimental investigation of the wave-induced motion of and force distribution along a flexible stem</title><title>Journal of fluid mechanics</title><description>The work presents an experimental investigation into the motion of and hydrodynamic forces along a single flexible stem in regular waves. The experiment covers a large range in relevant non-dimensional parameters: the drag-to-stiffness ratio
$CaL\in [0.003,3.8]$
, the inertia-to-stiffness ratio
$CaL/KC\in [4\times 10^{-5},14.8]$
, the Keulegan–Carpenter number
$KC\in [3.8,145]$
and the Reynolds number
$Re\in [230,2900]$
. The two first parameters relate to the response of the stem in waves and thus account for material properties, while the two last parameters are relevant for hydrodynamic forces on the stem. The displacement of the stem was captured with a digital video camera and the displacement along the stem was captured for every 2.5 mm at 25 Hz. This unique laboratory data set allowed for the following analyses: (i) Determination of the relevant non-dimensional parameter to predict the stem motion and shape. (ii) A direct comparison between the measured force for mimics of two lengths (0.15 m and 0.30 m) illustrating the force reduction potential for flexible mimics. (iii) Direct evaluation of the average force coefficients
$C_{D}$
(drag) and
$C_{M}$
(inertia) for the flexible stems. (iv) The distributed external hydrodynamic loading and the internal shear forces were estimated from the laboratory experiments. The distribution of the shear force helped to understand the breakage mechanisms of flexible stems. (v) A linkage between phase lags and internal shear forces was suggested. The data set is considered valuable as validation material for numerical models of stem motion in waves.</description><subject>Accuracy</subject><subject>Coefficients</subject><subject>Datasets</subject><subject>Displacement</subject><subject>Distribution</subject><subject>Drag</subject><subject>Experiments</subject><subject>Fluid flow</subject><subject>Force distribution</subject><subject>Forces (mechanics)</subject><subject>Hydrodynamics</subject><subject>Inertia</subject><subject>Laboratories</subject><subject>Material properties</subject><subject>Mathematical models</subject><subject>Movement</subject><subject>Numerical models</subject><subject>Parameters</subject><subject>Regular waves</subject><subject>Reynolds number</subject><subject>Sediment transport</subject><subject>Shear</subject><subject>Shear forces</subject><subject>Stems</subject><subject>Stiffness</subject><subject>Stress concentration</subject><subject>Vegetation</subject><subject>Velocity</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNo10MtOwzAQBVALgUQp7PgAS2xJ8SN24iWqykOqxAbWluOMi6skLrZTyt8TKKxmca9mNAeha0oWlNDqbuv6BSNULSquTtCMllIVlSzFKZoRwlhBKSPn6CKlLSGUE1XNEKwOO4i-hyGbDvthDyn7jck-DDg4nN8Bf5o9FH5oRwst7sN_ZIYWuxAt4NanHH0z_iamC8MGG-w6OPimA5wy9JfozJkuwdXfnKO3h9Xr8qlYvzw-L-_XheUVzYWxirHGKiEEGGudEy3jtZCyrJxUtTK1g8ZQ2ZSW1eCcNKSRraRcSWGEq_gc3Rz37mL4GKdX9DaMcZhOasYFJ0RQJabW7bFlY0gpgtO7ScDEL02J_oHUE6T-gdQTJP8Gzf9oJQ</recordid><startdate>20191210</startdate><enddate>20191210</enddate><creator>Jacobsen, Niels G.</creator><creator>Bakker, Wout</creator><creator>Uijttewaal, Wim S. J.</creator><creator>Uittenbogaard, Rob</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0003-2662-6282</orcidid></search><sort><creationdate>20191210</creationdate><title>Experimental investigation of the wave-induced motion of and force distribution along a flexible stem</title><author>Jacobsen, Niels G. ; Bakker, Wout ; Uijttewaal, Wim S. J. ; Uittenbogaard, Rob</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-ac922bc9555eaccff5d23856647f6989a8feba16b4c28eff6a0b6d613965a5f73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Accuracy</topic><topic>Coefficients</topic><topic>Datasets</topic><topic>Displacement</topic><topic>Distribution</topic><topic>Drag</topic><topic>Experiments</topic><topic>Fluid flow</topic><topic>Force distribution</topic><topic>Forces (mechanics)</topic><topic>Hydrodynamics</topic><topic>Inertia</topic><topic>Laboratories</topic><topic>Material properties</topic><topic>Mathematical models</topic><topic>Movement</topic><topic>Numerical models</topic><topic>Parameters</topic><topic>Regular waves</topic><topic>Reynolds number</topic><topic>Sediment transport</topic><topic>Shear</topic><topic>Shear forces</topic><topic>Stems</topic><topic>Stiffness</topic><topic>Stress concentration</topic><topic>Vegetation</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jacobsen, Niels G.</creatorcontrib><creatorcontrib>Bakker, Wout</creatorcontrib><creatorcontrib>Uijttewaal, Wim S. J.</creatorcontrib><creatorcontrib>Uittenbogaard, Rob</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jacobsen, Niels G.</au><au>Bakker, Wout</au><au>Uijttewaal, Wim S. J.</au><au>Uittenbogaard, Rob</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental investigation of the wave-induced motion of and force distribution along a flexible stem</atitle><jtitle>Journal of fluid mechanics</jtitle><date>2019-12-10</date><risdate>2019</risdate><volume>880</volume><spage>1036</spage><epage>1069</epage><pages>1036-1069</pages><issn>0022-1120</issn><eissn>1469-7645</eissn><abstract>The work presents an experimental investigation into the motion of and hydrodynamic forces along a single flexible stem in regular waves. The experiment covers a large range in relevant non-dimensional parameters: the drag-to-stiffness ratio
$CaL\in [0.003,3.8]$
, the inertia-to-stiffness ratio
$CaL/KC\in [4\times 10^{-5},14.8]$
, the Keulegan–Carpenter number
$KC\in [3.8,145]$
and the Reynolds number
$Re\in [230,2900]$
. The two first parameters relate to the response of the stem in waves and thus account for material properties, while the two last parameters are relevant for hydrodynamic forces on the stem. The displacement of the stem was captured with a digital video camera and the displacement along the stem was captured for every 2.5 mm at 25 Hz. This unique laboratory data set allowed for the following analyses: (i) Determination of the relevant non-dimensional parameter to predict the stem motion and shape. (ii) A direct comparison between the measured force for mimics of two lengths (0.15 m and 0.30 m) illustrating the force reduction potential for flexible mimics. (iii) Direct evaluation of the average force coefficients
$C_{D}$
(drag) and
$C_{M}$
(inertia) for the flexible stems. (iv) The distributed external hydrodynamic loading and the internal shear forces were estimated from the laboratory experiments. The distribution of the shear force helped to understand the breakage mechanisms of flexible stems. (v) A linkage between phase lags and internal shear forces was suggested. The data set is considered valuable as validation material for numerical models of stem motion in waves.</abstract><cop>Cambridge</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2019.739</doi><tpages>34</tpages><orcidid>https://orcid.org/0000-0003-2662-6282</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1120 |
ispartof | Journal of fluid mechanics, 2019-12, Vol.880, p.1036-1069 |
issn | 0022-1120 1469-7645 |
language | eng |
recordid | cdi_proquest_journals_2353005195 |
source | Cambridge University Press Journals Complete |
subjects | Accuracy Coefficients Datasets Displacement Distribution Drag Experiments Fluid flow Force distribution Forces (mechanics) Hydrodynamics Inertia Laboratories Material properties Mathematical models Movement Numerical models Parameters Regular waves Reynolds number Sediment transport Shear Shear forces Stems Stiffness Stress concentration Vegetation Velocity |
title | Experimental investigation of the wave-induced motion of and force distribution along a flexible stem |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T15%3A16%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20investigation%20of%20the%20wave-induced%20motion%20of%20and%20force%20distribution%20along%20a%20flexible%20stem&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Jacobsen,%20Niels%20G.&rft.date=2019-12-10&rft.volume=880&rft.spage=1036&rft.epage=1069&rft.pages=1036-1069&rft.issn=0022-1120&rft.eissn=1469-7645&rft_id=info:doi/10.1017/jfm.2019.739&rft_dat=%3Cproquest_cross%3E2353005195%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2353005195&rft_id=info:pmid/&rfr_iscdi=true |