On efficient algorithms for finding efficient salvo policies

We consider the salvo policy problem, in which there are k moments, called salvos, at which we can fire multiple missiles simultaneously at an incoming object. Each salvo is characterized by a probability pi: the hit probability of a single missile. After each salvo, we can assess whether the incomi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Naval research logistics 2020-03, Vol.67 (2), p.147-158
1. Verfasser: Ee, Martijn
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 158
container_issue 2
container_start_page 147
container_title Naval research logistics
container_volume 67
creator Ee, Martijn
description We consider the salvo policy problem, in which there are k moments, called salvos, at which we can fire multiple missiles simultaneously at an incoming object. Each salvo is characterized by a probability pi: the hit probability of a single missile. After each salvo, we can assess whether the incoming object is still active. If it is, we fire the missiles assigned to the next salvo. In the salvo policy problem, the goal is to assign at most n missiles to salvos in order to minimize the expected number of missiles used. We consider three problem versions. In Gould's version, we have to assign all n missiles to salvos. In the Big Bomb version, a cost of B is incurred when all salvo's are unsuccessful. Finally, we consider the Quota version in which the kill probability should exceed some quota Q. We discuss the computational complexity and the approximability of these problem versions. In particular, we show that Gould's version and the Big Bomb version admit pseudopolynomial time exact algorithms and fully polynomial time approximation schemes. We also present an iterative approximation algorithm for the Quota version, and show that a related problem is NP‐complete.
doi_str_mv 10.1002/nav.21891
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2352951276</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2352951276</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3301-4a1155292e230af4e7e093e250a20b4961d8d244afec4ba2babde3cf94a3ba973</originalsourceid><addsrcrecordid>eNp10E1Lw0AQBuBFFKzVg_8g4MlD2tmvJAteSrEqFHtR8bZMkt26Jc3W3bbSf29qPHjxNAw88w68hFxTGFEANm5xP2K0UPSEDKhkkGa5hFMygEKJFDL1fk4uYlwBQCZADsjdok2Mta5ypt0m2Cx9cNuPdUysD4l1be3a5R8Qsdn7ZOOb4x4vyZnFJpqr3zkkr7P7l-ljOl88PE0n87TiHGgqkFIpmWKGcUArTG5AccMkIINSqIzWRc2EQGsqUSIrsawNr6wSyEtUOR-Smz53E_znzsStXvldaLuXmvEuWFKWZ5267VUVfIzBWL0Jbo3hoCnoYzm6K0f_lNPZcW-_XGMO_0P9PHnrL74BA8Nluw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2352951276</pqid></control><display><type>article</type><title>On efficient algorithms for finding efficient salvo policies</title><source>Business Source Complete</source><source>Wiley Online Library All Journals</source><creator>Ee, Martijn</creator><creatorcontrib>Ee, Martijn</creatorcontrib><description>We consider the salvo policy problem, in which there are k moments, called salvos, at which we can fire multiple missiles simultaneously at an incoming object. Each salvo is characterized by a probability pi: the hit probability of a single missile. After each salvo, we can assess whether the incoming object is still active. If it is, we fire the missiles assigned to the next salvo. In the salvo policy problem, the goal is to assign at most n missiles to salvos in order to minimize the expected number of missiles used. We consider three problem versions. In Gould's version, we have to assign all n missiles to salvos. In the Big Bomb version, a cost of B is incurred when all salvo's are unsuccessful. Finally, we consider the Quota version in which the kill probability should exceed some quota Q. We discuss the computational complexity and the approximability of these problem versions. In particular, we show that Gould's version and the Big Bomb version admit pseudopolynomial time exact algorithms and fully polynomial time approximation schemes. We also present an iterative approximation algorithm for the Quota version, and show that a related problem is NP‐complete.</description><identifier>ISSN: 0894-069X</identifier><identifier>EISSN: 1520-6750</identifier><identifier>DOI: 10.1002/nav.21891</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Algorithms ; Approximation ; approximation scheme ; combat modeling ; computational complexity ; dynamic programming ; Fires ; Iterative methods ; Mathematical analysis ; Missiles ; Policies ; Polynomials ; Probability theory ; salvo policy</subject><ispartof>Naval research logistics, 2020-03, Vol.67 (2), p.147-158</ispartof><rights>2020 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3301-4a1155292e230af4e7e093e250a20b4961d8d244afec4ba2babde3cf94a3ba973</citedby><cites>FETCH-LOGICAL-c3301-4a1155292e230af4e7e093e250a20b4961d8d244afec4ba2babde3cf94a3ba973</cites><orcidid>0000-0002-7724-8990</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnav.21891$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnav.21891$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27922,27923,45572,45573</link.rule.ids></links><search><creatorcontrib>Ee, Martijn</creatorcontrib><title>On efficient algorithms for finding efficient salvo policies</title><title>Naval research logistics</title><description>We consider the salvo policy problem, in which there are k moments, called salvos, at which we can fire multiple missiles simultaneously at an incoming object. Each salvo is characterized by a probability pi: the hit probability of a single missile. After each salvo, we can assess whether the incoming object is still active. If it is, we fire the missiles assigned to the next salvo. In the salvo policy problem, the goal is to assign at most n missiles to salvos in order to minimize the expected number of missiles used. We consider three problem versions. In Gould's version, we have to assign all n missiles to salvos. In the Big Bomb version, a cost of B is incurred when all salvo's are unsuccessful. Finally, we consider the Quota version in which the kill probability should exceed some quota Q. We discuss the computational complexity and the approximability of these problem versions. In particular, we show that Gould's version and the Big Bomb version admit pseudopolynomial time exact algorithms and fully polynomial time approximation schemes. We also present an iterative approximation algorithm for the Quota version, and show that a related problem is NP‐complete.</description><subject>Algorithms</subject><subject>Approximation</subject><subject>approximation scheme</subject><subject>combat modeling</subject><subject>computational complexity</subject><subject>dynamic programming</subject><subject>Fires</subject><subject>Iterative methods</subject><subject>Mathematical analysis</subject><subject>Missiles</subject><subject>Policies</subject><subject>Polynomials</subject><subject>Probability theory</subject><subject>salvo policy</subject><issn>0894-069X</issn><issn>1520-6750</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp10E1Lw0AQBuBFFKzVg_8g4MlD2tmvJAteSrEqFHtR8bZMkt26Jc3W3bbSf29qPHjxNAw88w68hFxTGFEANm5xP2K0UPSEDKhkkGa5hFMygEKJFDL1fk4uYlwBQCZADsjdok2Mta5ypt0m2Cx9cNuPdUysD4l1be3a5R8Qsdn7ZOOb4x4vyZnFJpqr3zkkr7P7l-ljOl88PE0n87TiHGgqkFIpmWKGcUArTG5AccMkIINSqIzWRc2EQGsqUSIrsawNr6wSyEtUOR-Smz53E_znzsStXvldaLuXmvEuWFKWZ5267VUVfIzBWL0Jbo3hoCnoYzm6K0f_lNPZcW-_XGMO_0P9PHnrL74BA8Nluw</recordid><startdate>202003</startdate><enddate>202003</enddate><creator>Ee, Martijn</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>7TN</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>JQ2</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-7724-8990</orcidid></search><sort><creationdate>202003</creationdate><title>On efficient algorithms for finding efficient salvo policies</title><author>Ee, Martijn</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3301-4a1155292e230af4e7e093e250a20b4961d8d244afec4ba2babde3cf94a3ba973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Approximation</topic><topic>approximation scheme</topic><topic>combat modeling</topic><topic>computational complexity</topic><topic>dynamic programming</topic><topic>Fires</topic><topic>Iterative methods</topic><topic>Mathematical analysis</topic><topic>Missiles</topic><topic>Policies</topic><topic>Polynomials</topic><topic>Probability theory</topic><topic>salvo policy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ee, Martijn</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Naval research logistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ee, Martijn</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On efficient algorithms for finding efficient salvo policies</atitle><jtitle>Naval research logistics</jtitle><date>2020-03</date><risdate>2020</risdate><volume>67</volume><issue>2</issue><spage>147</spage><epage>158</epage><pages>147-158</pages><issn>0894-069X</issn><eissn>1520-6750</eissn><abstract>We consider the salvo policy problem, in which there are k moments, called salvos, at which we can fire multiple missiles simultaneously at an incoming object. Each salvo is characterized by a probability pi: the hit probability of a single missile. After each salvo, we can assess whether the incoming object is still active. If it is, we fire the missiles assigned to the next salvo. In the salvo policy problem, the goal is to assign at most n missiles to salvos in order to minimize the expected number of missiles used. We consider three problem versions. In Gould's version, we have to assign all n missiles to salvos. In the Big Bomb version, a cost of B is incurred when all salvo's are unsuccessful. Finally, we consider the Quota version in which the kill probability should exceed some quota Q. We discuss the computational complexity and the approximability of these problem versions. In particular, we show that Gould's version and the Big Bomb version admit pseudopolynomial time exact algorithms and fully polynomial time approximation schemes. We also present an iterative approximation algorithm for the Quota version, and show that a related problem is NP‐complete.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/nav.21891</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-7724-8990</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0894-069X
ispartof Naval research logistics, 2020-03, Vol.67 (2), p.147-158
issn 0894-069X
1520-6750
language eng
recordid cdi_proquest_journals_2352951276
source Business Source Complete; Wiley Online Library All Journals
subjects Algorithms
Approximation
approximation scheme
combat modeling
computational complexity
dynamic programming
Fires
Iterative methods
Mathematical analysis
Missiles
Policies
Polynomials
Probability theory
salvo policy
title On efficient algorithms for finding efficient salvo policies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T21%3A33%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20efficient%20algorithms%20for%20finding%20efficient%20salvo%20policies&rft.jtitle=Naval%20research%20logistics&rft.au=Ee,%20Martijn&rft.date=2020-03&rft.volume=67&rft.issue=2&rft.spage=147&rft.epage=158&rft.pages=147-158&rft.issn=0894-069X&rft.eissn=1520-6750&rft_id=info:doi/10.1002/nav.21891&rft_dat=%3Cproquest_cross%3E2352951276%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2352951276&rft_id=info:pmid/&rfr_iscdi=true