Short Term Blood Glucose Prediction based on Continuous Glucose Monitoring Data
Continuous Glucose Monitoring (CGM) has enabled important opportunities for diabetes management. This study explores the use of CGM data as input for digital decision support tools. We investigate how Recurrent Neural Networks (RNNs) can be used for Short Term Blood Glucose (STBG) prediction and com...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2020-07 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Mohebbi, Ali Johansen, Alexander R Hansen, Nicklas Christensen, Peter E Tarp, Jens M Jensen, Morten L Bengtsson, Henrik Mørup, Morten |
description | Continuous Glucose Monitoring (CGM) has enabled important opportunities for diabetes management. This study explores the use of CGM data as input for digital decision support tools. We investigate how Recurrent Neural Networks (RNNs) can be used for Short Term Blood Glucose (STBG) prediction and compare the RNNs to conventional time-series forecasting using Autoregressive Integrated Moving Average (ARIMA). A prediction horizon up to 90 min into the future is considered. In this context, we evaluate both population-based and patient-specific RNNs and contrast them to patient-specific ARIMA models and a simple baseline predicting future observations as the last observed. We find that the population-based RNN model is the best performing model across the considered prediction horizons without the need of patient-specific data. This demonstrates the potential of RNNs for STBG prediction in diabetes patients towards detecting/mitigating severe events in the STBG, in particular hypoglycemic events. However, further studies are needed in regards to the robustness and practical use of the investigated STBG prediction models. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2352830863</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2352830863</sourcerecordid><originalsourceid>FETCH-proquest_journals_23528308633</originalsourceid><addsrcrecordid>eNqNij0LwjAUAIMgWLT_4YFzISa2ZrZ-LaJg9xLbqCk1T_OS_28HcXa6g7sRS4SUi0wthZiwlKjjnItiJfJcJux0eaAPUBn_hHWP2MK-jw2SgbM3rW2CRQdXTaaFQUp0wbqIkX7bEZ0N6K27w0YHPWPjm-7JpF9O2Xy3rcpD9vL4joZC3WH0bki1kLlQkqtCyv-uD_n6PmQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2352830863</pqid></control><display><type>article</type><title>Short Term Blood Glucose Prediction based on Continuous Glucose Monitoring Data</title><source>Free E- Journals</source><creator>Mohebbi, Ali ; Johansen, Alexander R ; Hansen, Nicklas ; Christensen, Peter E ; Tarp, Jens M ; Jensen, Morten L ; Bengtsson, Henrik ; Mørup, Morten</creator><creatorcontrib>Mohebbi, Ali ; Johansen, Alexander R ; Hansen, Nicklas ; Christensen, Peter E ; Tarp, Jens M ; Jensen, Morten L ; Bengtsson, Henrik ; Mørup, Morten</creatorcontrib><description>Continuous Glucose Monitoring (CGM) has enabled important opportunities for diabetes management. This study explores the use of CGM data as input for digital decision support tools. We investigate how Recurrent Neural Networks (RNNs) can be used for Short Term Blood Glucose (STBG) prediction and compare the RNNs to conventional time-series forecasting using Autoregressive Integrated Moving Average (ARIMA). A prediction horizon up to 90 min into the future is considered. In this context, we evaluate both population-based and patient-specific RNNs and contrast them to patient-specific ARIMA models and a simple baseline predicting future observations as the last observed. We find that the population-based RNN model is the best performing model across the considered prediction horizons without the need of patient-specific data. This demonstrates the potential of RNNs for STBG prediction in diabetes patients towards detecting/mitigating severe events in the STBG, in particular hypoglycemic events. However, further studies are needed in regards to the robustness and practical use of the investigated STBG prediction models.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Autoregressive models ; Blood ; Diabetes ; Glucose ; Monitoring ; Predictions ; Recurrent neural networks</subject><ispartof>arXiv.org, 2020-07</ispartof><rights>2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Mohebbi, Ali</creatorcontrib><creatorcontrib>Johansen, Alexander R</creatorcontrib><creatorcontrib>Hansen, Nicklas</creatorcontrib><creatorcontrib>Christensen, Peter E</creatorcontrib><creatorcontrib>Tarp, Jens M</creatorcontrib><creatorcontrib>Jensen, Morten L</creatorcontrib><creatorcontrib>Bengtsson, Henrik</creatorcontrib><creatorcontrib>Mørup, Morten</creatorcontrib><title>Short Term Blood Glucose Prediction based on Continuous Glucose Monitoring Data</title><title>arXiv.org</title><description>Continuous Glucose Monitoring (CGM) has enabled important opportunities for diabetes management. This study explores the use of CGM data as input for digital decision support tools. We investigate how Recurrent Neural Networks (RNNs) can be used for Short Term Blood Glucose (STBG) prediction and compare the RNNs to conventional time-series forecasting using Autoregressive Integrated Moving Average (ARIMA). A prediction horizon up to 90 min into the future is considered. In this context, we evaluate both population-based and patient-specific RNNs and contrast them to patient-specific ARIMA models and a simple baseline predicting future observations as the last observed. We find that the population-based RNN model is the best performing model across the considered prediction horizons without the need of patient-specific data. This demonstrates the potential of RNNs for STBG prediction in diabetes patients towards detecting/mitigating severe events in the STBG, in particular hypoglycemic events. However, further studies are needed in regards to the robustness and practical use of the investigated STBG prediction models.</description><subject>Autoregressive models</subject><subject>Blood</subject><subject>Diabetes</subject><subject>Glucose</subject><subject>Monitoring</subject><subject>Predictions</subject><subject>Recurrent neural networks</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNij0LwjAUAIMgWLT_4YFzISa2ZrZ-LaJg9xLbqCk1T_OS_28HcXa6g7sRS4SUi0wthZiwlKjjnItiJfJcJux0eaAPUBn_hHWP2MK-jw2SgbM3rW2CRQdXTaaFQUp0wbqIkX7bEZ0N6K27w0YHPWPjm-7JpF9O2Xy3rcpD9vL4joZC3WH0bki1kLlQkqtCyv-uD_n6PmQ</recordid><startdate>20200715</startdate><enddate>20200715</enddate><creator>Mohebbi, Ali</creator><creator>Johansen, Alexander R</creator><creator>Hansen, Nicklas</creator><creator>Christensen, Peter E</creator><creator>Tarp, Jens M</creator><creator>Jensen, Morten L</creator><creator>Bengtsson, Henrik</creator><creator>Mørup, Morten</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200715</creationdate><title>Short Term Blood Glucose Prediction based on Continuous Glucose Monitoring Data</title><author>Mohebbi, Ali ; Johansen, Alexander R ; Hansen, Nicklas ; Christensen, Peter E ; Tarp, Jens M ; Jensen, Morten L ; Bengtsson, Henrik ; Mørup, Morten</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_23528308633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Autoregressive models</topic><topic>Blood</topic><topic>Diabetes</topic><topic>Glucose</topic><topic>Monitoring</topic><topic>Predictions</topic><topic>Recurrent neural networks</topic><toplevel>online_resources</toplevel><creatorcontrib>Mohebbi, Ali</creatorcontrib><creatorcontrib>Johansen, Alexander R</creatorcontrib><creatorcontrib>Hansen, Nicklas</creatorcontrib><creatorcontrib>Christensen, Peter E</creatorcontrib><creatorcontrib>Tarp, Jens M</creatorcontrib><creatorcontrib>Jensen, Morten L</creatorcontrib><creatorcontrib>Bengtsson, Henrik</creatorcontrib><creatorcontrib>Mørup, Morten</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mohebbi, Ali</au><au>Johansen, Alexander R</au><au>Hansen, Nicklas</au><au>Christensen, Peter E</au><au>Tarp, Jens M</au><au>Jensen, Morten L</au><au>Bengtsson, Henrik</au><au>Mørup, Morten</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Short Term Blood Glucose Prediction based on Continuous Glucose Monitoring Data</atitle><jtitle>arXiv.org</jtitle><date>2020-07-15</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>Continuous Glucose Monitoring (CGM) has enabled important opportunities for diabetes management. This study explores the use of CGM data as input for digital decision support tools. We investigate how Recurrent Neural Networks (RNNs) can be used for Short Term Blood Glucose (STBG) prediction and compare the RNNs to conventional time-series forecasting using Autoregressive Integrated Moving Average (ARIMA). A prediction horizon up to 90 min into the future is considered. In this context, we evaluate both population-based and patient-specific RNNs and contrast them to patient-specific ARIMA models and a simple baseline predicting future observations as the last observed. We find that the population-based RNN model is the best performing model across the considered prediction horizons without the need of patient-specific data. This demonstrates the potential of RNNs for STBG prediction in diabetes patients towards detecting/mitigating severe events in the STBG, in particular hypoglycemic events. However, further studies are needed in regards to the robustness and practical use of the investigated STBG prediction models.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2020-07 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2352830863 |
source | Free E- Journals |
subjects | Autoregressive models Blood Diabetes Glucose Monitoring Predictions Recurrent neural networks |
title | Short Term Blood Glucose Prediction based on Continuous Glucose Monitoring Data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T19%3A15%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Short%20Term%20Blood%20Glucose%20Prediction%20based%20on%20Continuous%20Glucose%20Monitoring%20Data&rft.jtitle=arXiv.org&rft.au=Mohebbi,%20Ali&rft.date=2020-07-15&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2352830863%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2352830863&rft_id=info:pmid/&rfr_iscdi=true |