Complexation by Organic Matter Controls Uranium Mobility in Anoxic Sediments
Uranium contamination threatens the availability of safe and clean drinking water globally. This toxic element occurs both naturally and as a result of mining and ore-processing in alluvial sediments, where it accumulates as tetravalent U [U(IV)], a form once considered largely immobile. Changing h...
Gespeichert in:
Veröffentlicht in: | Environmental Science & Technology 2020-02, Vol.54 (3), p.1493-1502 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1502 |
---|---|
container_issue | 3 |
container_start_page | 1493 |
container_title | Environmental Science & Technology |
container_volume | 54 |
creator | Bone, Sharon E Cliff, John Weaver, Karrie Takacs, Christopher J Roycroft, Scott Fendorf, Scott Bargar, John R |
description | Uranium contamination threatens the availability of safe and clean drinking water globally. This toxic element occurs both naturally and as a result of mining and ore-processing in alluvial sediments, where it accumulates as tetravalent U [U(IV)], a form once considered largely immobile. Changing hydrologic and geochemical conditions cause U to be released into groundwater. Knowledge of the chemical form(s) of U(IV) is essential to understand the release mechanism, yet the relevant U(IV) species are poorly characterized. There is growing belief that natural organic matter (OM) binds U(IV) and mediates its fate in the subsurface. In this work, we combined nanoscale imaging (nano secondary ion mass spectrometry and scanning transmission X-ray microscopy) with a density-based fractionation approach to physically and microscopically isolate organic and mineral matter from alluvial sediments contaminated with uranium. We identified two populations of U (dominantly +IV) in anoxic sediments. Uranium was retained on OM and adsorbed to particulate organic carbon, comprising both microbial and plant material. Surprisingly, U was also adsorbed to clay minerals and OM-coated clay minerals. The dominance of OM-associated U provides a framework to understand U mobility in the shallow subsurface, and, in particular, emphasizes roles for desorption and colloid formation in its mobilization. |
doi_str_mv | 10.1021/acs.est.9b04741 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_journals_2352592482</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2352592482</sourcerecordid><originalsourceid>FETCH-LOGICAL-a388t-a992d5249a5a82a901fdfce86356f6f088674c385a625b577c5652d6ff293cd73</originalsourceid><addsrcrecordid>eNp1kEtLAzEURoMoWqtrdzLoUqbmMckky1J8QUsXKrgLmUxGI52kJim0_96U1u5cXbic77uXA8AVgiMEMbpXOo5MTCPRwKqu0BEYIIphSTlFx2AAISKlIOzjDJzH-A0hxATyU3BGEOeMMT4A04nvlwuzVsl6VzSbYh4-lbO6mKmUTCgm3qXgF7F4D3m96ouZb-zCpk1hXTF2fp3RV9Pa3rgUL8BJpxbRXO7nELw_PrxNnsvp_OllMp6WinCeSiUEbimuhKKKYyUg6tpOG84IZR3rYP6trjThVDFMG1rXmjKKW9Z1WBDd1mQIbna9PiYro7bJ6C_tnTM6ScQgpEhk6HYHLYP_WWVJ8tuvgst_SUwopgJXHGfqfkfp4GMMppPLYHsVNhJBuVUss2K5Te8V58T1vnfV9KY98H9OM3C3A7bJw83_6n4Br_WFxA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2352592482</pqid></control><display><type>article</type><title>Complexation by Organic Matter Controls Uranium Mobility in Anoxic Sediments</title><source>ACS Publications</source><source>MEDLINE</source><creator>Bone, Sharon E ; Cliff, John ; Weaver, Karrie ; Takacs, Christopher J ; Roycroft, Scott ; Fendorf, Scott ; Bargar, John R</creator><creatorcontrib>Bone, Sharon E ; Cliff, John ; Weaver, Karrie ; Takacs, Christopher J ; Roycroft, Scott ; Fendorf, Scott ; Bargar, John R ; Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><description>Uranium contamination threatens the availability of safe and clean drinking water globally. This toxic element occurs both naturally and as a result of mining and ore-processing in alluvial sediments, where it accumulates as tetravalent U [U(IV)], a form once considered largely immobile. Changing hydrologic and geochemical conditions cause U to be released into groundwater. Knowledge of the chemical form(s) of U(IV) is essential to understand the release mechanism, yet the relevant U(IV) species are poorly characterized. There is growing belief that natural organic matter (OM) binds U(IV) and mediates its fate in the subsurface. In this work, we combined nanoscale imaging (nano secondary ion mass spectrometry and scanning transmission X-ray microscopy) with a density-based fractionation approach to physically and microscopically isolate organic and mineral matter from alluvial sediments contaminated with uranium. We identified two populations of U (dominantly +IV) in anoxic sediments. Uranium was retained on OM and adsorbed to particulate organic carbon, comprising both microbial and plant material. Surprisingly, U was also adsorbed to clay minerals and OM-coated clay minerals. The dominance of OM-associated U provides a framework to understand U mobility in the shallow subsurface, and, in particular, emphasizes roles for desorption and colloid formation in its mobilization.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/acs.est.9b04741</identifier><identifier>PMID: 31886668</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Clay ; Clay minerals ; Drinking water ; Fractionation ; Geologic Sediments ; Groundwater ; Hydrology ; Mass spectrometry ; Mass spectroscopy ; Microorganisms ; Minerals ; Mining ; Mobility ; Organic carbon ; Organic chemistry ; Organic matter ; Particulate organic carbon ; Secondary ion mass spectrometry ; Sediment pollution ; Sediments ; Uranium ; Water Pollutants, Radioactive ; X ray microscopy</subject><ispartof>Environmental Science & Technology, 2020-02, Vol.54 (3), p.1493-1502</ispartof><rights>Copyright American Chemical Society Feb 4, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a388t-a992d5249a5a82a901fdfce86356f6f088674c385a625b577c5652d6ff293cd73</citedby><cites>FETCH-LOGICAL-a388t-a992d5249a5a82a901fdfce86356f6f088674c385a625b577c5652d6ff293cd73</cites><orcidid>0000-0002-7521-9627 ; 0000-0002-7094-3501 ; 0000-0002-9177-1809 ; 0000-0001-9303-4901</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.est.9b04741$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.est.9b04741$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,881,2751,27055,27903,27904,56716,56766</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31886668$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1600519$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Bone, Sharon E</creatorcontrib><creatorcontrib>Cliff, John</creatorcontrib><creatorcontrib>Weaver, Karrie</creatorcontrib><creatorcontrib>Takacs, Christopher J</creatorcontrib><creatorcontrib>Roycroft, Scott</creatorcontrib><creatorcontrib>Fendorf, Scott</creatorcontrib><creatorcontrib>Bargar, John R</creatorcontrib><creatorcontrib>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><title>Complexation by Organic Matter Controls Uranium Mobility in Anoxic Sediments</title><title>Environmental Science & Technology</title><addtitle>Environ. Sci. Technol</addtitle><description>Uranium contamination threatens the availability of safe and clean drinking water globally. This toxic element occurs both naturally and as a result of mining and ore-processing in alluvial sediments, where it accumulates as tetravalent U [U(IV)], a form once considered largely immobile. Changing hydrologic and geochemical conditions cause U to be released into groundwater. Knowledge of the chemical form(s) of U(IV) is essential to understand the release mechanism, yet the relevant U(IV) species are poorly characterized. There is growing belief that natural organic matter (OM) binds U(IV) and mediates its fate in the subsurface. In this work, we combined nanoscale imaging (nano secondary ion mass spectrometry and scanning transmission X-ray microscopy) with a density-based fractionation approach to physically and microscopically isolate organic and mineral matter from alluvial sediments contaminated with uranium. We identified two populations of U (dominantly +IV) in anoxic sediments. Uranium was retained on OM and adsorbed to particulate organic carbon, comprising both microbial and plant material. Surprisingly, U was also adsorbed to clay minerals and OM-coated clay minerals. The dominance of OM-associated U provides a framework to understand U mobility in the shallow subsurface, and, in particular, emphasizes roles for desorption and colloid formation in its mobilization.</description><subject>Clay</subject><subject>Clay minerals</subject><subject>Drinking water</subject><subject>Fractionation</subject><subject>Geologic Sediments</subject><subject>Groundwater</subject><subject>Hydrology</subject><subject>Mass spectrometry</subject><subject>Mass spectroscopy</subject><subject>Microorganisms</subject><subject>Minerals</subject><subject>Mining</subject><subject>Mobility</subject><subject>Organic carbon</subject><subject>Organic chemistry</subject><subject>Organic matter</subject><subject>Particulate organic carbon</subject><subject>Secondary ion mass spectrometry</subject><subject>Sediment pollution</subject><subject>Sediments</subject><subject>Uranium</subject><subject>Water Pollutants, Radioactive</subject><subject>X ray microscopy</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kEtLAzEURoMoWqtrdzLoUqbmMckky1J8QUsXKrgLmUxGI52kJim0_96U1u5cXbic77uXA8AVgiMEMbpXOo5MTCPRwKqu0BEYIIphSTlFx2AAISKlIOzjDJzH-A0hxATyU3BGEOeMMT4A04nvlwuzVsl6VzSbYh4-lbO6mKmUTCgm3qXgF7F4D3m96ouZb-zCpk1hXTF2fp3RV9Pa3rgUL8BJpxbRXO7nELw_PrxNnsvp_OllMp6WinCeSiUEbimuhKKKYyUg6tpOG84IZR3rYP6trjThVDFMG1rXmjKKW9Z1WBDd1mQIbna9PiYro7bJ6C_tnTM6ScQgpEhk6HYHLYP_WWVJ8tuvgst_SUwopgJXHGfqfkfp4GMMppPLYHsVNhJBuVUss2K5Te8V58T1vnfV9KY98H9OM3C3A7bJw83_6n4Br_WFxA</recordid><startdate>20200204</startdate><enddate>20200204</enddate><creator>Bone, Sharon E</creator><creator>Cliff, John</creator><creator>Weaver, Karrie</creator><creator>Takacs, Christopher J</creator><creator>Roycroft, Scott</creator><creator>Fendorf, Scott</creator><creator>Bargar, John R</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-7521-9627</orcidid><orcidid>https://orcid.org/0000-0002-7094-3501</orcidid><orcidid>https://orcid.org/0000-0002-9177-1809</orcidid><orcidid>https://orcid.org/0000-0001-9303-4901</orcidid></search><sort><creationdate>20200204</creationdate><title>Complexation by Organic Matter Controls Uranium Mobility in Anoxic Sediments</title><author>Bone, Sharon E ; Cliff, John ; Weaver, Karrie ; Takacs, Christopher J ; Roycroft, Scott ; Fendorf, Scott ; Bargar, John R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a388t-a992d5249a5a82a901fdfce86356f6f088674c385a625b577c5652d6ff293cd73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Clay</topic><topic>Clay minerals</topic><topic>Drinking water</topic><topic>Fractionation</topic><topic>Geologic Sediments</topic><topic>Groundwater</topic><topic>Hydrology</topic><topic>Mass spectrometry</topic><topic>Mass spectroscopy</topic><topic>Microorganisms</topic><topic>Minerals</topic><topic>Mining</topic><topic>Mobility</topic><topic>Organic carbon</topic><topic>Organic chemistry</topic><topic>Organic matter</topic><topic>Particulate organic carbon</topic><topic>Secondary ion mass spectrometry</topic><topic>Sediment pollution</topic><topic>Sediments</topic><topic>Uranium</topic><topic>Water Pollutants, Radioactive</topic><topic>X ray microscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bone, Sharon E</creatorcontrib><creatorcontrib>Cliff, John</creatorcontrib><creatorcontrib>Weaver, Karrie</creatorcontrib><creatorcontrib>Takacs, Christopher J</creatorcontrib><creatorcontrib>Roycroft, Scott</creatorcontrib><creatorcontrib>Fendorf, Scott</creatorcontrib><creatorcontrib>Bargar, John R</creatorcontrib><creatorcontrib>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>OSTI.GOV</collection><jtitle>Environmental Science & Technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bone, Sharon E</au><au>Cliff, John</au><au>Weaver, Karrie</au><au>Takacs, Christopher J</au><au>Roycroft, Scott</au><au>Fendorf, Scott</au><au>Bargar, John R</au><aucorp>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Complexation by Organic Matter Controls Uranium Mobility in Anoxic Sediments</atitle><jtitle>Environmental Science & Technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2020-02-04</date><risdate>2020</risdate><volume>54</volume><issue>3</issue><spage>1493</spage><epage>1502</epage><pages>1493-1502</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><abstract>Uranium contamination threatens the availability of safe and clean drinking water globally. This toxic element occurs both naturally and as a result of mining and ore-processing in alluvial sediments, where it accumulates as tetravalent U [U(IV)], a form once considered largely immobile. Changing hydrologic and geochemical conditions cause U to be released into groundwater. Knowledge of the chemical form(s) of U(IV) is essential to understand the release mechanism, yet the relevant U(IV) species are poorly characterized. There is growing belief that natural organic matter (OM) binds U(IV) and mediates its fate in the subsurface. In this work, we combined nanoscale imaging (nano secondary ion mass spectrometry and scanning transmission X-ray microscopy) with a density-based fractionation approach to physically and microscopically isolate organic and mineral matter from alluvial sediments contaminated with uranium. We identified two populations of U (dominantly +IV) in anoxic sediments. Uranium was retained on OM and adsorbed to particulate organic carbon, comprising both microbial and plant material. Surprisingly, U was also adsorbed to clay minerals and OM-coated clay minerals. The dominance of OM-associated U provides a framework to understand U mobility in the shallow subsurface, and, in particular, emphasizes roles for desorption and colloid formation in its mobilization.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>31886668</pmid><doi>10.1021/acs.est.9b04741</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-7521-9627</orcidid><orcidid>https://orcid.org/0000-0002-7094-3501</orcidid><orcidid>https://orcid.org/0000-0002-9177-1809</orcidid><orcidid>https://orcid.org/0000-0001-9303-4901</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-936X |
ispartof | Environmental Science & Technology, 2020-02, Vol.54 (3), p.1493-1502 |
issn | 0013-936X 1520-5851 |
language | eng |
recordid | cdi_proquest_journals_2352592482 |
source | ACS Publications; MEDLINE |
subjects | Clay Clay minerals Drinking water Fractionation Geologic Sediments Groundwater Hydrology Mass spectrometry Mass spectroscopy Microorganisms Minerals Mining Mobility Organic carbon Organic chemistry Organic matter Particulate organic carbon Secondary ion mass spectrometry Sediment pollution Sediments Uranium Water Pollutants, Radioactive X ray microscopy |
title | Complexation by Organic Matter Controls Uranium Mobility in Anoxic Sediments |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T03%3A37%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Complexation%20by%20Organic%20Matter%20Controls%20Uranium%20Mobility%20in%20Anoxic%20Sediments&rft.jtitle=Environmental%20Science%20&%20Technology&rft.au=Bone,%20Sharon%20E&rft.aucorp=Pacific%20Northwest%20National%20Lab.%20(PNNL),%20Richland,%20WA%20(United%20States)&rft.date=2020-02-04&rft.volume=54&rft.issue=3&rft.spage=1493&rft.epage=1502&rft.pages=1493-1502&rft.issn=0013-936X&rft.eissn=1520-5851&rft_id=info:doi/10.1021/acs.est.9b04741&rft_dat=%3Cproquest_osti_%3E2352592482%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2352592482&rft_id=info:pmid/31886668&rfr_iscdi=true |