Complexation by Organic Matter Controls Uranium Mobility in Anoxic Sediments

Uranium contamination threatens the availability of safe and clean drinking water globally. This toxic element occurs both naturally and as a result of mining and ore-processing in alluvial sediments, where it accumulates as tetravalent U [U­(IV)], a form once considered largely immobile. Changing h...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental Science & Technology 2020-02, Vol.54 (3), p.1493-1502
Hauptverfasser: Bone, Sharon E, Cliff, John, Weaver, Karrie, Takacs, Christopher J, Roycroft, Scott, Fendorf, Scott, Bargar, John R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1502
container_issue 3
container_start_page 1493
container_title Environmental Science & Technology
container_volume 54
creator Bone, Sharon E
Cliff, John
Weaver, Karrie
Takacs, Christopher J
Roycroft, Scott
Fendorf, Scott
Bargar, John R
description Uranium contamination threatens the availability of safe and clean drinking water globally. This toxic element occurs both naturally and as a result of mining and ore-processing in alluvial sediments, where it accumulates as tetravalent U [U­(IV)], a form once considered largely immobile. Changing hydrologic and geochemical conditions cause U to be released into groundwater. Knowledge of the chemical form(s) of U­(IV) is essential to understand the release mechanism, yet the relevant U­(IV) species are poorly characterized. There is growing belief that natural organic matter (OM) binds U­(IV) and mediates its fate in the subsurface. In this work, we combined nanoscale imaging (nano secondary ion mass spectrometry and scanning transmission X-ray microscopy) with a density-based fractionation approach to physically and microscopically isolate organic and mineral matter from alluvial sediments contaminated with uranium. We identified two populations of U (dominantly +IV) in anoxic sediments. Uranium was retained on OM and adsorbed to particulate organic carbon, comprising both microbial and plant material. Surprisingly, U was also adsorbed to clay minerals and OM-coated clay minerals. The dominance of OM-associated U provides a framework to understand U mobility in the shallow subsurface, and, in particular, emphasizes roles for desorption and colloid formation in its mobilization.
doi_str_mv 10.1021/acs.est.9b04741
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_journals_2352592482</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2352592482</sourcerecordid><originalsourceid>FETCH-LOGICAL-a388t-a992d5249a5a82a901fdfce86356f6f088674c385a625b577c5652d6ff293cd73</originalsourceid><addsrcrecordid>eNp1kEtLAzEURoMoWqtrdzLoUqbmMckky1J8QUsXKrgLmUxGI52kJim0_96U1u5cXbic77uXA8AVgiMEMbpXOo5MTCPRwKqu0BEYIIphSTlFx2AAISKlIOzjDJzH-A0hxATyU3BGEOeMMT4A04nvlwuzVsl6VzSbYh4-lbO6mKmUTCgm3qXgF7F4D3m96ouZb-zCpk1hXTF2fp3RV9Pa3rgUL8BJpxbRXO7nELw_PrxNnsvp_OllMp6WinCeSiUEbimuhKKKYyUg6tpOG84IZR3rYP6trjThVDFMG1rXmjKKW9Z1WBDd1mQIbna9PiYro7bJ6C_tnTM6ScQgpEhk6HYHLYP_WWVJ8tuvgst_SUwopgJXHGfqfkfp4GMMppPLYHsVNhJBuVUss2K5Te8V58T1vnfV9KY98H9OM3C3A7bJw83_6n4Br_WFxA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2352592482</pqid></control><display><type>article</type><title>Complexation by Organic Matter Controls Uranium Mobility in Anoxic Sediments</title><source>ACS Publications</source><source>MEDLINE</source><creator>Bone, Sharon E ; Cliff, John ; Weaver, Karrie ; Takacs, Christopher J ; Roycroft, Scott ; Fendorf, Scott ; Bargar, John R</creator><creatorcontrib>Bone, Sharon E ; Cliff, John ; Weaver, Karrie ; Takacs, Christopher J ; Roycroft, Scott ; Fendorf, Scott ; Bargar, John R ; Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><description>Uranium contamination threatens the availability of safe and clean drinking water globally. This toxic element occurs both naturally and as a result of mining and ore-processing in alluvial sediments, where it accumulates as tetravalent U [U­(IV)], a form once considered largely immobile. Changing hydrologic and geochemical conditions cause U to be released into groundwater. Knowledge of the chemical form(s) of U­(IV) is essential to understand the release mechanism, yet the relevant U­(IV) species are poorly characterized. There is growing belief that natural organic matter (OM) binds U­(IV) and mediates its fate in the subsurface. In this work, we combined nanoscale imaging (nano secondary ion mass spectrometry and scanning transmission X-ray microscopy) with a density-based fractionation approach to physically and microscopically isolate organic and mineral matter from alluvial sediments contaminated with uranium. We identified two populations of U (dominantly +IV) in anoxic sediments. Uranium was retained on OM and adsorbed to particulate organic carbon, comprising both microbial and plant material. Surprisingly, U was also adsorbed to clay minerals and OM-coated clay minerals. The dominance of OM-associated U provides a framework to understand U mobility in the shallow subsurface, and, in particular, emphasizes roles for desorption and colloid formation in its mobilization.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/acs.est.9b04741</identifier><identifier>PMID: 31886668</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Clay ; Clay minerals ; Drinking water ; Fractionation ; Geologic Sediments ; Groundwater ; Hydrology ; Mass spectrometry ; Mass spectroscopy ; Microorganisms ; Minerals ; Mining ; Mobility ; Organic carbon ; Organic chemistry ; Organic matter ; Particulate organic carbon ; Secondary ion mass spectrometry ; Sediment pollution ; Sediments ; Uranium ; Water Pollutants, Radioactive ; X ray microscopy</subject><ispartof>Environmental Science &amp; Technology, 2020-02, Vol.54 (3), p.1493-1502</ispartof><rights>Copyright American Chemical Society Feb 4, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a388t-a992d5249a5a82a901fdfce86356f6f088674c385a625b577c5652d6ff293cd73</citedby><cites>FETCH-LOGICAL-a388t-a992d5249a5a82a901fdfce86356f6f088674c385a625b577c5652d6ff293cd73</cites><orcidid>0000-0002-7521-9627 ; 0000-0002-7094-3501 ; 0000-0002-9177-1809 ; 0000-0001-9303-4901</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.est.9b04741$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.est.9b04741$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,881,2751,27055,27903,27904,56716,56766</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31886668$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1600519$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Bone, Sharon E</creatorcontrib><creatorcontrib>Cliff, John</creatorcontrib><creatorcontrib>Weaver, Karrie</creatorcontrib><creatorcontrib>Takacs, Christopher J</creatorcontrib><creatorcontrib>Roycroft, Scott</creatorcontrib><creatorcontrib>Fendorf, Scott</creatorcontrib><creatorcontrib>Bargar, John R</creatorcontrib><creatorcontrib>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><title>Complexation by Organic Matter Controls Uranium Mobility in Anoxic Sediments</title><title>Environmental Science &amp; Technology</title><addtitle>Environ. Sci. Technol</addtitle><description>Uranium contamination threatens the availability of safe and clean drinking water globally. This toxic element occurs both naturally and as a result of mining and ore-processing in alluvial sediments, where it accumulates as tetravalent U [U­(IV)], a form once considered largely immobile. Changing hydrologic and geochemical conditions cause U to be released into groundwater. Knowledge of the chemical form(s) of U­(IV) is essential to understand the release mechanism, yet the relevant U­(IV) species are poorly characterized. There is growing belief that natural organic matter (OM) binds U­(IV) and mediates its fate in the subsurface. In this work, we combined nanoscale imaging (nano secondary ion mass spectrometry and scanning transmission X-ray microscopy) with a density-based fractionation approach to physically and microscopically isolate organic and mineral matter from alluvial sediments contaminated with uranium. We identified two populations of U (dominantly +IV) in anoxic sediments. Uranium was retained on OM and adsorbed to particulate organic carbon, comprising both microbial and plant material. Surprisingly, U was also adsorbed to clay minerals and OM-coated clay minerals. The dominance of OM-associated U provides a framework to understand U mobility in the shallow subsurface, and, in particular, emphasizes roles for desorption and colloid formation in its mobilization.</description><subject>Clay</subject><subject>Clay minerals</subject><subject>Drinking water</subject><subject>Fractionation</subject><subject>Geologic Sediments</subject><subject>Groundwater</subject><subject>Hydrology</subject><subject>Mass spectrometry</subject><subject>Mass spectroscopy</subject><subject>Microorganisms</subject><subject>Minerals</subject><subject>Mining</subject><subject>Mobility</subject><subject>Organic carbon</subject><subject>Organic chemistry</subject><subject>Organic matter</subject><subject>Particulate organic carbon</subject><subject>Secondary ion mass spectrometry</subject><subject>Sediment pollution</subject><subject>Sediments</subject><subject>Uranium</subject><subject>Water Pollutants, Radioactive</subject><subject>X ray microscopy</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kEtLAzEURoMoWqtrdzLoUqbmMckky1J8QUsXKrgLmUxGI52kJim0_96U1u5cXbic77uXA8AVgiMEMbpXOo5MTCPRwKqu0BEYIIphSTlFx2AAISKlIOzjDJzH-A0hxATyU3BGEOeMMT4A04nvlwuzVsl6VzSbYh4-lbO6mKmUTCgm3qXgF7F4D3m96ouZb-zCpk1hXTF2fp3RV9Pa3rgUL8BJpxbRXO7nELw_PrxNnsvp_OllMp6WinCeSiUEbimuhKKKYyUg6tpOG84IZR3rYP6trjThVDFMG1rXmjKKW9Z1WBDd1mQIbna9PiYro7bJ6C_tnTM6ScQgpEhk6HYHLYP_WWVJ8tuvgst_SUwopgJXHGfqfkfp4GMMppPLYHsVNhJBuVUss2K5Te8V58T1vnfV9KY98H9OM3C3A7bJw83_6n4Br_WFxA</recordid><startdate>20200204</startdate><enddate>20200204</enddate><creator>Bone, Sharon E</creator><creator>Cliff, John</creator><creator>Weaver, Karrie</creator><creator>Takacs, Christopher J</creator><creator>Roycroft, Scott</creator><creator>Fendorf, Scott</creator><creator>Bargar, John R</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-7521-9627</orcidid><orcidid>https://orcid.org/0000-0002-7094-3501</orcidid><orcidid>https://orcid.org/0000-0002-9177-1809</orcidid><orcidid>https://orcid.org/0000-0001-9303-4901</orcidid></search><sort><creationdate>20200204</creationdate><title>Complexation by Organic Matter Controls Uranium Mobility in Anoxic Sediments</title><author>Bone, Sharon E ; Cliff, John ; Weaver, Karrie ; Takacs, Christopher J ; Roycroft, Scott ; Fendorf, Scott ; Bargar, John R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a388t-a992d5249a5a82a901fdfce86356f6f088674c385a625b577c5652d6ff293cd73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Clay</topic><topic>Clay minerals</topic><topic>Drinking water</topic><topic>Fractionation</topic><topic>Geologic Sediments</topic><topic>Groundwater</topic><topic>Hydrology</topic><topic>Mass spectrometry</topic><topic>Mass spectroscopy</topic><topic>Microorganisms</topic><topic>Minerals</topic><topic>Mining</topic><topic>Mobility</topic><topic>Organic carbon</topic><topic>Organic chemistry</topic><topic>Organic matter</topic><topic>Particulate organic carbon</topic><topic>Secondary ion mass spectrometry</topic><topic>Sediment pollution</topic><topic>Sediments</topic><topic>Uranium</topic><topic>Water Pollutants, Radioactive</topic><topic>X ray microscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bone, Sharon E</creatorcontrib><creatorcontrib>Cliff, John</creatorcontrib><creatorcontrib>Weaver, Karrie</creatorcontrib><creatorcontrib>Takacs, Christopher J</creatorcontrib><creatorcontrib>Roycroft, Scott</creatorcontrib><creatorcontrib>Fendorf, Scott</creatorcontrib><creatorcontrib>Bargar, John R</creatorcontrib><creatorcontrib>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>OSTI.GOV</collection><jtitle>Environmental Science &amp; Technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bone, Sharon E</au><au>Cliff, John</au><au>Weaver, Karrie</au><au>Takacs, Christopher J</au><au>Roycroft, Scott</au><au>Fendorf, Scott</au><au>Bargar, John R</au><aucorp>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Complexation by Organic Matter Controls Uranium Mobility in Anoxic Sediments</atitle><jtitle>Environmental Science &amp; Technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2020-02-04</date><risdate>2020</risdate><volume>54</volume><issue>3</issue><spage>1493</spage><epage>1502</epage><pages>1493-1502</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><abstract>Uranium contamination threatens the availability of safe and clean drinking water globally. This toxic element occurs both naturally and as a result of mining and ore-processing in alluvial sediments, where it accumulates as tetravalent U [U­(IV)], a form once considered largely immobile. Changing hydrologic and geochemical conditions cause U to be released into groundwater. Knowledge of the chemical form(s) of U­(IV) is essential to understand the release mechanism, yet the relevant U­(IV) species are poorly characterized. There is growing belief that natural organic matter (OM) binds U­(IV) and mediates its fate in the subsurface. In this work, we combined nanoscale imaging (nano secondary ion mass spectrometry and scanning transmission X-ray microscopy) with a density-based fractionation approach to physically and microscopically isolate organic and mineral matter from alluvial sediments contaminated with uranium. We identified two populations of U (dominantly +IV) in anoxic sediments. Uranium was retained on OM and adsorbed to particulate organic carbon, comprising both microbial and plant material. Surprisingly, U was also adsorbed to clay minerals and OM-coated clay minerals. The dominance of OM-associated U provides a framework to understand U mobility in the shallow subsurface, and, in particular, emphasizes roles for desorption and colloid formation in its mobilization.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>31886668</pmid><doi>10.1021/acs.est.9b04741</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-7521-9627</orcidid><orcidid>https://orcid.org/0000-0002-7094-3501</orcidid><orcidid>https://orcid.org/0000-0002-9177-1809</orcidid><orcidid>https://orcid.org/0000-0001-9303-4901</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0013-936X
ispartof Environmental Science & Technology, 2020-02, Vol.54 (3), p.1493-1502
issn 0013-936X
1520-5851
language eng
recordid cdi_proquest_journals_2352592482
source ACS Publications; MEDLINE
subjects Clay
Clay minerals
Drinking water
Fractionation
Geologic Sediments
Groundwater
Hydrology
Mass spectrometry
Mass spectroscopy
Microorganisms
Minerals
Mining
Mobility
Organic carbon
Organic chemistry
Organic matter
Particulate organic carbon
Secondary ion mass spectrometry
Sediment pollution
Sediments
Uranium
Water Pollutants, Radioactive
X ray microscopy
title Complexation by Organic Matter Controls Uranium Mobility in Anoxic Sediments
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T03%3A37%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Complexation%20by%20Organic%20Matter%20Controls%20Uranium%20Mobility%20in%20Anoxic%20Sediments&rft.jtitle=Environmental%20Science%20&%20Technology&rft.au=Bone,%20Sharon%20E&rft.aucorp=Pacific%20Northwest%20National%20Lab.%20(PNNL),%20Richland,%20WA%20(United%20States)&rft.date=2020-02-04&rft.volume=54&rft.issue=3&rft.spage=1493&rft.epage=1502&rft.pages=1493-1502&rft.issn=0013-936X&rft.eissn=1520-5851&rft_id=info:doi/10.1021/acs.est.9b04741&rft_dat=%3Cproquest_osti_%3E2352592482%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2352592482&rft_id=info:pmid/31886668&rfr_iscdi=true