Bregman Proximal Mappings and Bregman–Moreau Envelopes Under Relative Prox-Regularity
We systematically study the local single-valuedness of the Bregman proximal mapping and local smoothness of the Bregman–Moreau envelope of a nonconvex function under relative prox-regularity—an extension of prox-regularity—which was originally introduced by Poliquin and Rockafellar. As Bregman dista...
Gespeichert in:
Veröffentlicht in: | Journal of optimization theory and applications 2020-03, Vol.184 (3), p.724-761 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 761 |
---|---|
container_issue | 3 |
container_start_page | 724 |
container_title | Journal of optimization theory and applications |
container_volume | 184 |
creator | Laude, Emanuel Ochs, Peter Cremers, Daniel |
description | We systematically study the local single-valuedness of the Bregman proximal mapping and local smoothness of the Bregman–Moreau envelope of a nonconvex function under relative prox-regularity—an extension of prox-regularity—which was originally introduced by Poliquin and Rockafellar. As Bregman distances are asymmetric in general, in accordance with Bauschke et al., it is natural to consider two variants of the Bregman proximal mapping, which, depending on the order of the arguments, are called left and right Bregman proximal mapping. We consider the left Bregman proximal mapping first. Then, via translation result, we obtain analogue (and partially sharp) results for the right Bregman proximal mapping. The class of relatively prox-regular functions significantly extends the recently considered class of relatively hypoconvex functions. In particular, relative prox-regularity allows for functions with a possibly nonconvex domain. Moreover, as a main source of examples and analogously to the classical setting, we introduce relatively amenable functions, i.e. convexly composite functions, for which the inner nonlinear mapping is component-wise smooth adaptable, a recently introduced extension of Lipschitz differentiability. By way of example, we apply our theory to locally interpret joint alternating Bregman minimization with proximal regularization as a Bregman proximal gradient algorithm, applied to a smooth adaptable function. |
doi_str_mv | 10.1007/s10957-019-01628-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2352399146</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2352399146</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-e48f8fa08f4658ecb36102ee9a081272225b57413479807f66987ef0e68e82a03</originalsourceid><addsrcrecordid>eNp9UMtOwzAQtBBIlMIPcLLE2bC2k9g5QlUeUitQRcXRcttNlCpNgp1U9MY_8Id8CaapxI3DaqXdmdmdIeSSwzUHUDeeQxorBjwNlQjNxBEZ8FhJJrTSx2QAIASTQqan5Mz7NQCkWkUD8nbnMN_Yir64-qPY2JJObdMUVe6prVb0sP3-_JrWDm1Hx9UWy7pBT-fVCh2dYWnbYot7Ppth3pXWFe3unJxktvR4cehDMr8fv44e2eT54Wl0O2FLqeOWYaQznVnQWZTEGpcLmXAQiGkYcaGEEPEiVhGXkUo1qCxJwtuYASYatbAgh-Sq121c_d6hb8267lwVThoh4-A35VESUKJHLV3tvcPMNC6YdTvDwfwGaPoATQjQ7AMM7CGRPckHcJWj-5P-h_UDQktzkA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2352399146</pqid></control><display><type>article</type><title>Bregman Proximal Mappings and Bregman–Moreau Envelopes Under Relative Prox-Regularity</title><source>Springer Nature - Complete Springer Journals</source><creator>Laude, Emanuel ; Ochs, Peter ; Cremers, Daniel</creator><creatorcontrib>Laude, Emanuel ; Ochs, Peter ; Cremers, Daniel</creatorcontrib><description>We systematically study the local single-valuedness of the Bregman proximal mapping and local smoothness of the Bregman–Moreau envelope of a nonconvex function under relative prox-regularity—an extension of prox-regularity—which was originally introduced by Poliquin and Rockafellar. As Bregman distances are asymmetric in general, in accordance with Bauschke et al., it is natural to consider two variants of the Bregman proximal mapping, which, depending on the order of the arguments, are called left and right Bregman proximal mapping. We consider the left Bregman proximal mapping first. Then, via translation result, we obtain analogue (and partially sharp) results for the right Bregman proximal mapping. The class of relatively prox-regular functions significantly extends the recently considered class of relatively hypoconvex functions. In particular, relative prox-regularity allows for functions with a possibly nonconvex domain. Moreover, as a main source of examples and analogously to the classical setting, we introduce relatively amenable functions, i.e. convexly composite functions, for which the inner nonlinear mapping is component-wise smooth adaptable, a recently introduced extension of Lipschitz differentiability. By way of example, we apply our theory to locally interpret joint alternating Bregman minimization with proximal regularization as a Bregman proximal gradient algorithm, applied to a smooth adaptable function.</description><identifier>ISSN: 0022-3239</identifier><identifier>EISSN: 1573-2878</identifier><identifier>DOI: 10.1007/s10957-019-01628-2</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Applications of Mathematics ; Calculus of Variations and Optimal Control; Optimization ; Composite functions ; Engineering ; Mapping ; Mathematics ; Mathematics and Statistics ; Operations Research/Decision Theory ; Optimization ; Regularity ; Regularization ; Smoothness ; Theory of Computation</subject><ispartof>Journal of optimization theory and applications, 2020-03, Vol.184 (3), p.724-761</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Journal of Optimization Theory and Applications is a copyright of Springer, (2020). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-e48f8fa08f4658ecb36102ee9a081272225b57413479807f66987ef0e68e82a03</citedby><cites>FETCH-LOGICAL-c385t-e48f8fa08f4658ecb36102ee9a081272225b57413479807f66987ef0e68e82a03</cites><orcidid>0000-0002-9106-2690</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10957-019-01628-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10957-019-01628-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Laude, Emanuel</creatorcontrib><creatorcontrib>Ochs, Peter</creatorcontrib><creatorcontrib>Cremers, Daniel</creatorcontrib><title>Bregman Proximal Mappings and Bregman–Moreau Envelopes Under Relative Prox-Regularity</title><title>Journal of optimization theory and applications</title><addtitle>J Optim Theory Appl</addtitle><description>We systematically study the local single-valuedness of the Bregman proximal mapping and local smoothness of the Bregman–Moreau envelope of a nonconvex function under relative prox-regularity—an extension of prox-regularity—which was originally introduced by Poliquin and Rockafellar. As Bregman distances are asymmetric in general, in accordance with Bauschke et al., it is natural to consider two variants of the Bregman proximal mapping, which, depending on the order of the arguments, are called left and right Bregman proximal mapping. We consider the left Bregman proximal mapping first. Then, via translation result, we obtain analogue (and partially sharp) results for the right Bregman proximal mapping. The class of relatively prox-regular functions significantly extends the recently considered class of relatively hypoconvex functions. In particular, relative prox-regularity allows for functions with a possibly nonconvex domain. Moreover, as a main source of examples and analogously to the classical setting, we introduce relatively amenable functions, i.e. convexly composite functions, for which the inner nonlinear mapping is component-wise smooth adaptable, a recently introduced extension of Lipschitz differentiability. By way of example, we apply our theory to locally interpret joint alternating Bregman minimization with proximal regularization as a Bregman proximal gradient algorithm, applied to a smooth adaptable function.</description><subject>Algorithms</subject><subject>Applications of Mathematics</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Composite functions</subject><subject>Engineering</subject><subject>Mapping</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operations Research/Decision Theory</subject><subject>Optimization</subject><subject>Regularity</subject><subject>Regularization</subject><subject>Smoothness</subject><subject>Theory of Computation</subject><issn>0022-3239</issn><issn>1573-2878</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9UMtOwzAQtBBIlMIPcLLE2bC2k9g5QlUeUitQRcXRcttNlCpNgp1U9MY_8Id8CaapxI3DaqXdmdmdIeSSwzUHUDeeQxorBjwNlQjNxBEZ8FhJJrTSx2QAIASTQqan5Mz7NQCkWkUD8nbnMN_Yir64-qPY2JJObdMUVe6prVb0sP3-_JrWDm1Hx9UWy7pBT-fVCh2dYWnbYot7Ppth3pXWFe3unJxktvR4cehDMr8fv44e2eT54Wl0O2FLqeOWYaQznVnQWZTEGpcLmXAQiGkYcaGEEPEiVhGXkUo1qCxJwtuYASYatbAgh-Sq121c_d6hb8267lwVThoh4-A35VESUKJHLV3tvcPMNC6YdTvDwfwGaPoATQjQ7AMM7CGRPckHcJWj-5P-h_UDQktzkA</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Laude, Emanuel</creator><creator>Ochs, Peter</creator><creator>Cremers, Daniel</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-9106-2690</orcidid></search><sort><creationdate>20200301</creationdate><title>Bregman Proximal Mappings and Bregman–Moreau Envelopes Under Relative Prox-Regularity</title><author>Laude, Emanuel ; Ochs, Peter ; Cremers, Daniel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-e48f8fa08f4658ecb36102ee9a081272225b57413479807f66987ef0e68e82a03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Applications of Mathematics</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Composite functions</topic><topic>Engineering</topic><topic>Mapping</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operations Research/Decision Theory</topic><topic>Optimization</topic><topic>Regularity</topic><topic>Regularization</topic><topic>Smoothness</topic><topic>Theory of Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Laude, Emanuel</creatorcontrib><creatorcontrib>Ochs, Peter</creatorcontrib><creatorcontrib>Cremers, Daniel</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of optimization theory and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Laude, Emanuel</au><au>Ochs, Peter</au><au>Cremers, Daniel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bregman Proximal Mappings and Bregman–Moreau Envelopes Under Relative Prox-Regularity</atitle><jtitle>Journal of optimization theory and applications</jtitle><stitle>J Optim Theory Appl</stitle><date>2020-03-01</date><risdate>2020</risdate><volume>184</volume><issue>3</issue><spage>724</spage><epage>761</epage><pages>724-761</pages><issn>0022-3239</issn><eissn>1573-2878</eissn><abstract>We systematically study the local single-valuedness of the Bregman proximal mapping and local smoothness of the Bregman–Moreau envelope of a nonconvex function under relative prox-regularity—an extension of prox-regularity—which was originally introduced by Poliquin and Rockafellar. As Bregman distances are asymmetric in general, in accordance with Bauschke et al., it is natural to consider two variants of the Bregman proximal mapping, which, depending on the order of the arguments, are called left and right Bregman proximal mapping. We consider the left Bregman proximal mapping first. Then, via translation result, we obtain analogue (and partially sharp) results for the right Bregman proximal mapping. The class of relatively prox-regular functions significantly extends the recently considered class of relatively hypoconvex functions. In particular, relative prox-regularity allows for functions with a possibly nonconvex domain. Moreover, as a main source of examples and analogously to the classical setting, we introduce relatively amenable functions, i.e. convexly composite functions, for which the inner nonlinear mapping is component-wise smooth adaptable, a recently introduced extension of Lipschitz differentiability. By way of example, we apply our theory to locally interpret joint alternating Bregman minimization with proximal regularization as a Bregman proximal gradient algorithm, applied to a smooth adaptable function.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10957-019-01628-2</doi><tpages>38</tpages><orcidid>https://orcid.org/0000-0002-9106-2690</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-3239 |
ispartof | Journal of optimization theory and applications, 2020-03, Vol.184 (3), p.724-761 |
issn | 0022-3239 1573-2878 |
language | eng |
recordid | cdi_proquest_journals_2352399146 |
source | Springer Nature - Complete Springer Journals |
subjects | Algorithms Applications of Mathematics Calculus of Variations and Optimal Control Optimization Composite functions Engineering Mapping Mathematics Mathematics and Statistics Operations Research/Decision Theory Optimization Regularity Regularization Smoothness Theory of Computation |
title | Bregman Proximal Mappings and Bregman–Moreau Envelopes Under Relative Prox-Regularity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T13%3A57%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bregman%20Proximal%20Mappings%20and%20Bregman%E2%80%93Moreau%20Envelopes%20Under%20Relative%20Prox-Regularity&rft.jtitle=Journal%20of%20optimization%20theory%20and%20applications&rft.au=Laude,%20Emanuel&rft.date=2020-03-01&rft.volume=184&rft.issue=3&rft.spage=724&rft.epage=761&rft.pages=724-761&rft.issn=0022-3239&rft.eissn=1573-2878&rft_id=info:doi/10.1007/s10957-019-01628-2&rft_dat=%3Cproquest_cross%3E2352399146%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2352399146&rft_id=info:pmid/&rfr_iscdi=true |