Brain tumor classification based on DWT fusion of MRI sequences using convolutional neural network

•New method proposed for brain tumor classification based on fused MRI sequences.•T1, T1C, T2 and Flair MRI sequences are fused using discrete wavelet transform.•A global thresholding method is utilized to segment tumor region.•The segmented images are passed to 23 layers CNN model for classificatio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pattern recognition letters 2020-01, Vol.129, p.115-122
Hauptverfasser: Amin, Javaria, Sharif, Muhammad, Gul, Nadia, Yasmin, Mussarat, Shad, Shafqat Ali
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 122
container_issue
container_start_page 115
container_title Pattern recognition letters
container_volume 129
creator Amin, Javaria
Sharif, Muhammad
Gul, Nadia
Yasmin, Mussarat
Shad, Shafqat Ali
description •New method proposed for brain tumor classification based on fused MRI sequences.•T1, T1C, T2 and Flair MRI sequences are fused using discrete wavelet transform.•A global thresholding method is utilized to segment tumor region.•The segmented images are passed to 23 layers CNN model for classification.•Presented approach evaluation on BRATS datasets to authenticate its performance. Tumor in brain is an anthology of anomalous cells. It leads to increase in death rate among humans. Therefore, in this manuscript, a fusion process is proposed to combine structural and texture information of four MRI sequences (T1C, T1, Flair and T2) for the detection of brain tumor. A discrete wavelet transform (DWT) along with Daubechies wavelet kernel is utilized for fusion process which provides a more informative tumor region as compared to an individual single sequence of MRI. After the fusion process, a partial differential diffusion filter (PDDF) is applied to remove noise. A global thresholding method is used for segmenting tumor region which is then fed to proposed convolutional neural network (CNN) model for finally differentiating tumor and non-tumor regions. Five publicly available datasets i.e., BRATS 2012, BRATS 2013, BRATS 2015, BRATS 2013 Leader board and BRATS 2018 are used for proposed method evaluation. The results show that fused images provide better results as compared to individual sequences on benchmark datasets.
doi_str_mv 10.1016/j.patrec.2019.11.016
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2352367898</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167865519303307</els_id><sourcerecordid>2352367898</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-784e4885e4c1506435574aabec4899e281716ceb2c58f5698d13dfe399eaf6173</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-Aw8Bz61J89mLoOvXwoogKx5DmqaSutusSbvivze1nj3N8Mz7DjMvAOcY5RhhftnmO90Ha_IC4TLHOE_wAMywFEUmCKWHYJaIyCRn7BicxNgihDgp5QxUN0G7DvbD1gdoNjpG1zije-c7WOloa5ia27c1bIY4Mt_Ap5cljPZzsJ2xESbcvUPju73fDKNNb2Bnh_Bb-i8fPk7BUaM30Z791Tl4vb9bLx6z1fPDcnG9ygxFqM-EpJZKySw1mCFOCWOCal1ZQ2VZ2kJigbmxVWGYbBgvZY1J3ViSZrrhWJA5uJj27oJP18VetX4I6Z6oCsIKwoUsZVLRSWWCjzHYRu2C2-rwrTBSY5qqVVOaakxTYawSTLaryWbTB3tng4rGjQnULkl7VXv3_4IfEzqAKw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2352367898</pqid></control><display><type>article</type><title>Brain tumor classification based on DWT fusion of MRI sequences using convolutional neural network</title><source>Elsevier ScienceDirect Journals</source><creator>Amin, Javaria ; Sharif, Muhammad ; Gul, Nadia ; Yasmin, Mussarat ; Shad, Shafqat Ali</creator><creatorcontrib>Amin, Javaria ; Sharif, Muhammad ; Gul, Nadia ; Yasmin, Mussarat ; Shad, Shafqat Ali</creatorcontrib><description>•New method proposed for brain tumor classification based on fused MRI sequences.•T1, T1C, T2 and Flair MRI sequences are fused using discrete wavelet transform.•A global thresholding method is utilized to segment tumor region.•The segmented images are passed to 23 layers CNN model for classification.•Presented approach evaluation on BRATS datasets to authenticate its performance. Tumor in brain is an anthology of anomalous cells. It leads to increase in death rate among humans. Therefore, in this manuscript, a fusion process is proposed to combine structural and texture information of four MRI sequences (T1C, T1, Flair and T2) for the detection of brain tumor. A discrete wavelet transform (DWT) along with Daubechies wavelet kernel is utilized for fusion process which provides a more informative tumor region as compared to an individual single sequence of MRI. After the fusion process, a partial differential diffusion filter (PDDF) is applied to remove noise. A global thresholding method is used for segmenting tumor region which is then fed to proposed convolutional neural network (CNN) model for finally differentiating tumor and non-tumor regions. Five publicly available datasets i.e., BRATS 2012, BRATS 2013, BRATS 2015, BRATS 2013 Leader board and BRATS 2018 are used for proposed method evaluation. The results show that fused images provide better results as compared to individual sequences on benchmark datasets.</description><identifier>ISSN: 0167-8655</identifier><identifier>EISSN: 1872-7344</identifier><identifier>DOI: 10.1016/j.patrec.2019.11.016</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Artificial neural networks ; Brain ; Brain cancer ; Brain tumors ; CNN ; Datasets ; Discrete Wavelet Transform ; DWT ; Filter ; Global thresholding ; Hierarchies ; Magnetic resonance imaging ; Neural networks ; Sequences ; Tumors ; Wavelet transforms</subject><ispartof>Pattern recognition letters, 2020-01, Vol.129, p.115-122</ispartof><rights>2019</rights><rights>Copyright Elsevier Science Ltd. Jan 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-784e4885e4c1506435574aabec4899e281716ceb2c58f5698d13dfe399eaf6173</citedby><cites>FETCH-LOGICAL-c400t-784e4885e4c1506435574aabec4899e281716ceb2c58f5698d13dfe399eaf6173</cites><orcidid>0000-0002-1355-2168 ; 0000-0003-0339-1070</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.patrec.2019.11.016$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids></links><search><creatorcontrib>Amin, Javaria</creatorcontrib><creatorcontrib>Sharif, Muhammad</creatorcontrib><creatorcontrib>Gul, Nadia</creatorcontrib><creatorcontrib>Yasmin, Mussarat</creatorcontrib><creatorcontrib>Shad, Shafqat Ali</creatorcontrib><title>Brain tumor classification based on DWT fusion of MRI sequences using convolutional neural network</title><title>Pattern recognition letters</title><description>•New method proposed for brain tumor classification based on fused MRI sequences.•T1, T1C, T2 and Flair MRI sequences are fused using discrete wavelet transform.•A global thresholding method is utilized to segment tumor region.•The segmented images are passed to 23 layers CNN model for classification.•Presented approach evaluation on BRATS datasets to authenticate its performance. Tumor in brain is an anthology of anomalous cells. It leads to increase in death rate among humans. Therefore, in this manuscript, a fusion process is proposed to combine structural and texture information of four MRI sequences (T1C, T1, Flair and T2) for the detection of brain tumor. A discrete wavelet transform (DWT) along with Daubechies wavelet kernel is utilized for fusion process which provides a more informative tumor region as compared to an individual single sequence of MRI. After the fusion process, a partial differential diffusion filter (PDDF) is applied to remove noise. A global thresholding method is used for segmenting tumor region which is then fed to proposed convolutional neural network (CNN) model for finally differentiating tumor and non-tumor regions. Five publicly available datasets i.e., BRATS 2012, BRATS 2013, BRATS 2015, BRATS 2013 Leader board and BRATS 2018 are used for proposed method evaluation. The results show that fused images provide better results as compared to individual sequences on benchmark datasets.</description><subject>Artificial neural networks</subject><subject>Brain</subject><subject>Brain cancer</subject><subject>Brain tumors</subject><subject>CNN</subject><subject>Datasets</subject><subject>Discrete Wavelet Transform</subject><subject>DWT</subject><subject>Filter</subject><subject>Global thresholding</subject><subject>Hierarchies</subject><subject>Magnetic resonance imaging</subject><subject>Neural networks</subject><subject>Sequences</subject><subject>Tumors</subject><subject>Wavelet transforms</subject><issn>0167-8655</issn><issn>1872-7344</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-Aw8Bz61J89mLoOvXwoogKx5DmqaSutusSbvivze1nj3N8Mz7DjMvAOcY5RhhftnmO90Ha_IC4TLHOE_wAMywFEUmCKWHYJaIyCRn7BicxNgihDgp5QxUN0G7DvbD1gdoNjpG1zije-c7WOloa5ia27c1bIY4Mt_Ap5cljPZzsJ2xESbcvUPju73fDKNNb2Bnh_Bb-i8fPk7BUaM30Z791Tl4vb9bLx6z1fPDcnG9ygxFqM-EpJZKySw1mCFOCWOCal1ZQ2VZ2kJigbmxVWGYbBgvZY1J3ViSZrrhWJA5uJj27oJP18VetX4I6Z6oCsIKwoUsZVLRSWWCjzHYRu2C2-rwrTBSY5qqVVOaakxTYawSTLaryWbTB3tng4rGjQnULkl7VXv3_4IfEzqAKw</recordid><startdate>202001</startdate><enddate>202001</enddate><creator>Amin, Javaria</creator><creator>Sharif, Muhammad</creator><creator>Gul, Nadia</creator><creator>Yasmin, Mussarat</creator><creator>Shad, Shafqat Ali</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TK</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-1355-2168</orcidid><orcidid>https://orcid.org/0000-0003-0339-1070</orcidid></search><sort><creationdate>202001</creationdate><title>Brain tumor classification based on DWT fusion of MRI sequences using convolutional neural network</title><author>Amin, Javaria ; Sharif, Muhammad ; Gul, Nadia ; Yasmin, Mussarat ; Shad, Shafqat Ali</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-784e4885e4c1506435574aabec4899e281716ceb2c58f5698d13dfe399eaf6173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Artificial neural networks</topic><topic>Brain</topic><topic>Brain cancer</topic><topic>Brain tumors</topic><topic>CNN</topic><topic>Datasets</topic><topic>Discrete Wavelet Transform</topic><topic>DWT</topic><topic>Filter</topic><topic>Global thresholding</topic><topic>Hierarchies</topic><topic>Magnetic resonance imaging</topic><topic>Neural networks</topic><topic>Sequences</topic><topic>Tumors</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Amin, Javaria</creatorcontrib><creatorcontrib>Sharif, Muhammad</creatorcontrib><creatorcontrib>Gul, Nadia</creatorcontrib><creatorcontrib>Yasmin, Mussarat</creatorcontrib><creatorcontrib>Shad, Shafqat Ali</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Pattern recognition letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Amin, Javaria</au><au>Sharif, Muhammad</au><au>Gul, Nadia</au><au>Yasmin, Mussarat</au><au>Shad, Shafqat Ali</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Brain tumor classification based on DWT fusion of MRI sequences using convolutional neural network</atitle><jtitle>Pattern recognition letters</jtitle><date>2020-01</date><risdate>2020</risdate><volume>129</volume><spage>115</spage><epage>122</epage><pages>115-122</pages><issn>0167-8655</issn><eissn>1872-7344</eissn><abstract>•New method proposed for brain tumor classification based on fused MRI sequences.•T1, T1C, T2 and Flair MRI sequences are fused using discrete wavelet transform.•A global thresholding method is utilized to segment tumor region.•The segmented images are passed to 23 layers CNN model for classification.•Presented approach evaluation on BRATS datasets to authenticate its performance. Tumor in brain is an anthology of anomalous cells. It leads to increase in death rate among humans. Therefore, in this manuscript, a fusion process is proposed to combine structural and texture information of four MRI sequences (T1C, T1, Flair and T2) for the detection of brain tumor. A discrete wavelet transform (DWT) along with Daubechies wavelet kernel is utilized for fusion process which provides a more informative tumor region as compared to an individual single sequence of MRI. After the fusion process, a partial differential diffusion filter (PDDF) is applied to remove noise. A global thresholding method is used for segmenting tumor region which is then fed to proposed convolutional neural network (CNN) model for finally differentiating tumor and non-tumor regions. Five publicly available datasets i.e., BRATS 2012, BRATS 2013, BRATS 2015, BRATS 2013 Leader board and BRATS 2018 are used for proposed method evaluation. The results show that fused images provide better results as compared to individual sequences on benchmark datasets.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.patrec.2019.11.016</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-1355-2168</orcidid><orcidid>https://orcid.org/0000-0003-0339-1070</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0167-8655
ispartof Pattern recognition letters, 2020-01, Vol.129, p.115-122
issn 0167-8655
1872-7344
language eng
recordid cdi_proquest_journals_2352367898
source Elsevier ScienceDirect Journals
subjects Artificial neural networks
Brain
Brain cancer
Brain tumors
CNN
Datasets
Discrete Wavelet Transform
DWT
Filter
Global thresholding
Hierarchies
Magnetic resonance imaging
Neural networks
Sequences
Tumors
Wavelet transforms
title Brain tumor classification based on DWT fusion of MRI sequences using convolutional neural network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T11%3A35%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Brain%20tumor%20classification%20based%20on%20DWT%20fusion%20of%20MRI%20sequences%20using%20convolutional%20neural%20network&rft.jtitle=Pattern%20recognition%20letters&rft.au=Amin,%20Javaria&rft.date=2020-01&rft.volume=129&rft.spage=115&rft.epage=122&rft.pages=115-122&rft.issn=0167-8655&rft.eissn=1872-7344&rft_id=info:doi/10.1016/j.patrec.2019.11.016&rft_dat=%3Cproquest_cross%3E2352367898%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2352367898&rft_id=info:pmid/&rft_els_id=S0167865519303307&rfr_iscdi=true