Planar membrane humidifier for fuel cell application: Numerical and experimental case study

•A model for planar membrane humidifier is developed and validated.•Experimental and simulation study of water-to-gas membrane humidifier is presented.•Results show developed model predicts the empirical data with error of less than 7%.•Key role of membrane humidifier is clarified by applying this s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of heat and mass transfer 2020-02, Vol.147, p.118872, Article 118872
Hauptverfasser: Kord Firouzjaei, V., Rahgoshay, S.M., Khorshidian, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 118872
container_title International journal of heat and mass transfer
container_volume 147
creator Kord Firouzjaei, V.
Rahgoshay, S.M.
Khorshidian, M.
description •A model for planar membrane humidifier is developed and validated.•Experimental and simulation study of water-to-gas membrane humidifier is presented.•Results show developed model predicts the empirical data with error of less than 7%.•Key role of membrane humidifier is clarified by applying this system for 10 kW stack. One of the basic requirements for proper functioning and managing the water content of the fuel cell is the humidity of the reactant gas. In this paper, a model is developed for investigating the humidification of reactant gas using a water-to-gas planar membrane humidifier. All the governing equations of the model in one-dimensional mode (along the channel length) are solved using an in-house developed code. Then, to validate the model, a humidification single cell is fabricated and the performance of membrane humidifier is investigated both experimentally and numerically. Simulation results show that developed model predicts well the experimental results with an error of less than 7%. The results show that by increasing the length of the channel, the gas temperature increases up to the temperature of heating water, moreover, the relative humidity of the gas would also increase. At high flow rates, the amount of consumed water increases, however, the relative humidity of the gas flow will decrease by about 40% because of the decreased residence time. Finally, the pivotal roles of membrane humidifier in the fuel cell stack is clarified based on the results of applying this system for a 10 kW fuel cell stack.
doi_str_mv 10.1016/j.ijheatmasstransfer.2019.118872
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2352365724</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0017931019334325</els_id><sourcerecordid>2352365724</sourcerecordid><originalsourceid>FETCH-LOGICAL-c370t-9219ae4f4a255378fbf2ff13f3afa0fd36a16851a48d179fd7b08703cf5122503</originalsourceid><addsrcrecordid>eNqNkE1LxDAQhoMouK7-h4IXL62ZpG1aT8riJ4t60JOHkE0nbEq_TFpx_71Z6s2LhyG8w_DM5CHkAmgCFPLLOrH1FtXYKu9Hpzpv0CWMQpkAFIVgB2QBhShjBkV5SBaUgohLDvSYnHhf7yNN8wX5eG1Up1zUYrsJFIy2U2srayy6yPShJmwijU0TqWForFaj7bur6Hlq0YUU2l0V4fcQUovdGBpaeYz8OFW7U3JkVOPx7Pddkve727fVQ7x-uX9c3axjzQUd45JBqTA1qWJZxkVhNoYZA9xwZRQ1Fc8V5EUGKi0qEKWpxIYWgnJtMmAso3xJzmfu4PrPCf0o635yXVgpGc8YzzPB0jB1PU9p13vv0Mgh3KzcTgKVe6Wyln-Vyr1SOSsNiKcZgeE3X0GR9Npip7GyDvUoq97-H_YDQmiM7g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2352365724</pqid></control><display><type>article</type><title>Planar membrane humidifier for fuel cell application: Numerical and experimental case study</title><source>Access via ScienceDirect (Elsevier)</source><creator>Kord Firouzjaei, V. ; Rahgoshay, S.M. ; Khorshidian, M.</creator><creatorcontrib>Kord Firouzjaei, V. ; Rahgoshay, S.M. ; Khorshidian, M.</creatorcontrib><description>•A model for planar membrane humidifier is developed and validated.•Experimental and simulation study of water-to-gas membrane humidifier is presented.•Results show developed model predicts the empirical data with error of less than 7%.•Key role of membrane humidifier is clarified by applying this system for 10 kW stack. One of the basic requirements for proper functioning and managing the water content of the fuel cell is the humidity of the reactant gas. In this paper, a model is developed for investigating the humidification of reactant gas using a water-to-gas planar membrane humidifier. All the governing equations of the model in one-dimensional mode (along the channel length) are solved using an in-house developed code. Then, to validate the model, a humidification single cell is fabricated and the performance of membrane humidifier is investigated both experimentally and numerically. Simulation results show that developed model predicts well the experimental results with an error of less than 7%. The results show that by increasing the length of the channel, the gas temperature increases up to the temperature of heating water, moreover, the relative humidity of the gas would also increase. At high flow rates, the amount of consumed water increases, however, the relative humidity of the gas flow will decrease by about 40% because of the decreased residence time. Finally, the pivotal roles of membrane humidifier in the fuel cell stack is clarified based on the results of applying this system for a 10 kW fuel cell stack.</description><identifier>ISSN: 0017-9310</identifier><identifier>EISSN: 1879-2189</identifier><identifier>DOI: 10.1016/j.ijheatmasstransfer.2019.118872</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Computer simulation ; Experimental test ; Flow velocity ; Fuel cells ; Gas flow ; Gas temperature ; Humidification ; Humidity ; Integrated humidifier ; Mathematical models ; Membrane humidifier ; Membranes ; Moisture content ; Numerical modeling ; Relative humidity ; Water-to-gas</subject><ispartof>International journal of heat and mass transfer, 2020-02, Vol.147, p.118872, Article 118872</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright Elsevier BV Feb 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c370t-9219ae4f4a255378fbf2ff13f3afa0fd36a16851a48d179fd7b08703cf5122503</citedby><cites>FETCH-LOGICAL-c370t-9219ae4f4a255378fbf2ff13f3afa0fd36a16851a48d179fd7b08703cf5122503</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijheatmasstransfer.2019.118872$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Kord Firouzjaei, V.</creatorcontrib><creatorcontrib>Rahgoshay, S.M.</creatorcontrib><creatorcontrib>Khorshidian, M.</creatorcontrib><title>Planar membrane humidifier for fuel cell application: Numerical and experimental case study</title><title>International journal of heat and mass transfer</title><description>•A model for planar membrane humidifier is developed and validated.•Experimental and simulation study of water-to-gas membrane humidifier is presented.•Results show developed model predicts the empirical data with error of less than 7%.•Key role of membrane humidifier is clarified by applying this system for 10 kW stack. One of the basic requirements for proper functioning and managing the water content of the fuel cell is the humidity of the reactant gas. In this paper, a model is developed for investigating the humidification of reactant gas using a water-to-gas planar membrane humidifier. All the governing equations of the model in one-dimensional mode (along the channel length) are solved using an in-house developed code. Then, to validate the model, a humidification single cell is fabricated and the performance of membrane humidifier is investigated both experimentally and numerically. Simulation results show that developed model predicts well the experimental results with an error of less than 7%. The results show that by increasing the length of the channel, the gas temperature increases up to the temperature of heating water, moreover, the relative humidity of the gas would also increase. At high flow rates, the amount of consumed water increases, however, the relative humidity of the gas flow will decrease by about 40% because of the decreased residence time. Finally, the pivotal roles of membrane humidifier in the fuel cell stack is clarified based on the results of applying this system for a 10 kW fuel cell stack.</description><subject>Computer simulation</subject><subject>Experimental test</subject><subject>Flow velocity</subject><subject>Fuel cells</subject><subject>Gas flow</subject><subject>Gas temperature</subject><subject>Humidification</subject><subject>Humidity</subject><subject>Integrated humidifier</subject><subject>Mathematical models</subject><subject>Membrane humidifier</subject><subject>Membranes</subject><subject>Moisture content</subject><subject>Numerical modeling</subject><subject>Relative humidity</subject><subject>Water-to-gas</subject><issn>0017-9310</issn><issn>1879-2189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqNkE1LxDAQhoMouK7-h4IXL62ZpG1aT8riJ4t60JOHkE0nbEq_TFpx_71Z6s2LhyG8w_DM5CHkAmgCFPLLOrH1FtXYKu9Hpzpv0CWMQpkAFIVgB2QBhShjBkV5SBaUgohLDvSYnHhf7yNN8wX5eG1Up1zUYrsJFIy2U2srayy6yPShJmwijU0TqWForFaj7bur6Hlq0YUU2l0V4fcQUovdGBpaeYz8OFW7U3JkVOPx7Pddkve727fVQ7x-uX9c3axjzQUd45JBqTA1qWJZxkVhNoYZA9xwZRQ1Fc8V5EUGKi0qEKWpxIYWgnJtMmAso3xJzmfu4PrPCf0o635yXVgpGc8YzzPB0jB1PU9p13vv0Mgh3KzcTgKVe6Wyln-Vyr1SOSsNiKcZgeE3X0GR9Npip7GyDvUoq97-H_YDQmiM7g</recordid><startdate>202002</startdate><enddate>202002</enddate><creator>Kord Firouzjaei, V.</creator><creator>Rahgoshay, S.M.</creator><creator>Khorshidian, M.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>202002</creationdate><title>Planar membrane humidifier for fuel cell application: Numerical and experimental case study</title><author>Kord Firouzjaei, V. ; Rahgoshay, S.M. ; Khorshidian, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c370t-9219ae4f4a255378fbf2ff13f3afa0fd36a16851a48d179fd7b08703cf5122503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Computer simulation</topic><topic>Experimental test</topic><topic>Flow velocity</topic><topic>Fuel cells</topic><topic>Gas flow</topic><topic>Gas temperature</topic><topic>Humidification</topic><topic>Humidity</topic><topic>Integrated humidifier</topic><topic>Mathematical models</topic><topic>Membrane humidifier</topic><topic>Membranes</topic><topic>Moisture content</topic><topic>Numerical modeling</topic><topic>Relative humidity</topic><topic>Water-to-gas</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kord Firouzjaei, V.</creatorcontrib><creatorcontrib>Rahgoshay, S.M.</creatorcontrib><creatorcontrib>Khorshidian, M.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal of heat and mass transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kord Firouzjaei, V.</au><au>Rahgoshay, S.M.</au><au>Khorshidian, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Planar membrane humidifier for fuel cell application: Numerical and experimental case study</atitle><jtitle>International journal of heat and mass transfer</jtitle><date>2020-02</date><risdate>2020</risdate><volume>147</volume><spage>118872</spage><pages>118872-</pages><artnum>118872</artnum><issn>0017-9310</issn><eissn>1879-2189</eissn><abstract>•A model for planar membrane humidifier is developed and validated.•Experimental and simulation study of water-to-gas membrane humidifier is presented.•Results show developed model predicts the empirical data with error of less than 7%.•Key role of membrane humidifier is clarified by applying this system for 10 kW stack. One of the basic requirements for proper functioning and managing the water content of the fuel cell is the humidity of the reactant gas. In this paper, a model is developed for investigating the humidification of reactant gas using a water-to-gas planar membrane humidifier. All the governing equations of the model in one-dimensional mode (along the channel length) are solved using an in-house developed code. Then, to validate the model, a humidification single cell is fabricated and the performance of membrane humidifier is investigated both experimentally and numerically. Simulation results show that developed model predicts well the experimental results with an error of less than 7%. The results show that by increasing the length of the channel, the gas temperature increases up to the temperature of heating water, moreover, the relative humidity of the gas would also increase. At high flow rates, the amount of consumed water increases, however, the relative humidity of the gas flow will decrease by about 40% because of the decreased residence time. Finally, the pivotal roles of membrane humidifier in the fuel cell stack is clarified based on the results of applying this system for a 10 kW fuel cell stack.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijheatmasstransfer.2019.118872</doi></addata></record>
fulltext fulltext
identifier ISSN: 0017-9310
ispartof International journal of heat and mass transfer, 2020-02, Vol.147, p.118872, Article 118872
issn 0017-9310
1879-2189
language eng
recordid cdi_proquest_journals_2352365724
source Access via ScienceDirect (Elsevier)
subjects Computer simulation
Experimental test
Flow velocity
Fuel cells
Gas flow
Gas temperature
Humidification
Humidity
Integrated humidifier
Mathematical models
Membrane humidifier
Membranes
Moisture content
Numerical modeling
Relative humidity
Water-to-gas
title Planar membrane humidifier for fuel cell application: Numerical and experimental case study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T18%3A23%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Planar%20membrane%20humidifier%20for%20fuel%20cell%20application:%20Numerical%20and%20experimental%20case%20study&rft.jtitle=International%20journal%20of%20heat%20and%20mass%20transfer&rft.au=Kord%20Firouzjaei,%20V.&rft.date=2020-02&rft.volume=147&rft.spage=118872&rft.pages=118872-&rft.artnum=118872&rft.issn=0017-9310&rft.eissn=1879-2189&rft_id=info:doi/10.1016/j.ijheatmasstransfer.2019.118872&rft_dat=%3Cproquest_cross%3E2352365724%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2352365724&rft_id=info:pmid/&rft_els_id=S0017931019334325&rfr_iscdi=true