Characterization of heat transfer enhancement for an oscillating flat plate-fin

•Infinitesimally thin plate-fin vibration is investigated at Re = 100, Pr = 0.71.•Study covers 0.25 ≤ k ≤ 16 and 0.03 ≤ h ≤ 8 giving plunge velocities 0.25 ≤ kh ≤ 4.•Nusselt number shows strong dependence on kh only, not on individual k and h.•Nusselt number (Nu) increases monotonically with kh.•Nus...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of heat and mass transfer 2020-02, Vol.147, p.119001, Article 119001
Hauptverfasser: Rahman, Aevelina, Tafti, Danesh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 119001
container_title International journal of heat and mass transfer
container_volume 147
creator Rahman, Aevelina
Tafti, Danesh
description •Infinitesimally thin plate-fin vibration is investigated at Re = 100, Pr = 0.71.•Study covers 0.25 ≤ k ≤ 16 and 0.03 ≤ h ≤ 8 giving plunge velocities 0.25 ≤ kh ≤ 4.•Nusselt number shows strong dependence on kh only, not on individual k and h.•Nusselt number (Nu) increases monotonically with kh.•Nusselt number is parameterized as a function of kh. Heat transfer augmentation is of paramount importance in energy transfer and storage systems and the idea of using the inherent vibrations in a system to enhance heat transfer needs to be thoroughly researched upon. The current study numerically investigates an infinitesimally thin plate-fin undergoing forced oscillations over a range of amplitudes and frequencies in the presence of an approach flow. Reduced frequencies of 0.25 ≤ k ≤ 16 and plunge amplitudes of 0.03125 ≤ h ≤ 8 are investigated at Re = 100 and Pr = 0.71. It is shown that the combined effect of frequency and amplitude on heat transfer enhancement can be accounted for as a single parameter “plunge velocity” (0.25 ≤ kh ≤ 4) instead of the individual frequency and amplitude values. For kh > 0.5 a significant increase in Nusselt number (Nu) is observed compared to a stationary plate. With increasing kh or more vigorous oscillations, the increase in Nu becomes more prominent and similar trends and comparable magnitudes were observed for a constant kh value. Unlike the hydrodynamic counterpart of the study, both Leading Edge Vortices (LEVs) and Trailing Edge Vortices (TEVs) are found to act positively to induce enhanced heat transfer on the plate. Finally, the dependence of heat transfer augmentation on the frequency and amplitude of vibration is quantified with a simple parameterization for a plate-fin in a fluid medium.
doi_str_mv 10.1016/j.ijheatmasstransfer.2019.119001
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2352361212</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0017931019343996</els_id><sourcerecordid>2352361212</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-1b302d18f65a64c4d0806ff62e3c96499699e9cbd8140ca31cb8ed2f053144483</originalsourceid><addsrcrecordid>eNqNkE1PAyEQhonRxFr9DyRevOzKAKXLTdP4mSa96JlQFiyblq1ATfTXy2b15MXLTAbePJN5ELoCUgMBcd3VvttYnXc6pRx1SM7GmhKQNYAkBI7QBJq5rCg08hhNysu8kgzIKTpLqRtGwsUErRYbHbXJNvovnX0fcO_wwMW_UGzDRgdjdzZk7PqIdckk47fbkg9v2JWO96XYyvlwjk6c3iZ78dOn6PX-7mXxWC1XD0-L22VlOG1yBWtGaAuNEzMtuOEtaYhwTlDLjBRcSiGllWbdNsCJ0QzMurEtdWTGgHPesCm6HLn72L8fbMqq6w8xlJWKshllAijQkroZUyb2KUXr1D76nY6fCogaNKpO_dWoBo1q1FgQzyPClms-fPktt9vio_XRmqza3v8f9g2Lrof6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2352361212</pqid></control><display><type>article</type><title>Characterization of heat transfer enhancement for an oscillating flat plate-fin</title><source>Elsevier ScienceDirect Journals</source><creator>Rahman, Aevelina ; Tafti, Danesh</creator><creatorcontrib>Rahman, Aevelina ; Tafti, Danesh</creatorcontrib><description>•Infinitesimally thin plate-fin vibration is investigated at Re = 100, Pr = 0.71.•Study covers 0.25 ≤ k ≤ 16 and 0.03 ≤ h ≤ 8 giving plunge velocities 0.25 ≤ kh ≤ 4.•Nusselt number shows strong dependence on kh only, not on individual k and h.•Nusselt number (Nu) increases monotonically with kh.•Nusselt number is parameterized as a function of kh. Heat transfer augmentation is of paramount importance in energy transfer and storage systems and the idea of using the inherent vibrations in a system to enhance heat transfer needs to be thoroughly researched upon. The current study numerically investigates an infinitesimally thin plate-fin undergoing forced oscillations over a range of amplitudes and frequencies in the presence of an approach flow. Reduced frequencies of 0.25 ≤ k ≤ 16 and plunge amplitudes of 0.03125 ≤ h ≤ 8 are investigated at Re = 100 and Pr = 0.71. It is shown that the combined effect of frequency and amplitude on heat transfer enhancement can be accounted for as a single parameter “plunge velocity” (0.25 ≤ kh ≤ 4) instead of the individual frequency and amplitude values. For kh &gt; 0.5 a significant increase in Nusselt number (Nu) is observed compared to a stationary plate. With increasing kh or more vigorous oscillations, the increase in Nu becomes more prominent and similar trends and comparable magnitudes were observed for a constant kh value. Unlike the hydrodynamic counterpart of the study, both Leading Edge Vortices (LEVs) and Trailing Edge Vortices (TEVs) are found to act positively to induce enhanced heat transfer on the plate. Finally, the dependence of heat transfer augmentation on the frequency and amplitude of vibration is quantified with a simple parameterization for a plate-fin in a fluid medium.</description><identifier>ISSN: 0017-9310</identifier><identifier>EISSN: 1879-2189</identifier><identifier>DOI: 10.1016/j.ijheatmasstransfer.2019.119001</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Amplitudes ; Augmentation ; Computational fluid dynamics ; Energy storage ; Energy transfer ; Flat plates ; Fluid flow ; Heat transfer ; Heat transfer enhancement ; Low Reynolds number ; Oscillating flat plate-fin ; Oscillations ; Parameterization ; Plate-Fin ; Plunge velocity ; Storage systems ; Thin plates ; Vortices</subject><ispartof>International journal of heat and mass transfer, 2020-02, Vol.147, p.119001, Article 119001</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright Elsevier BV Feb 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-1b302d18f65a64c4d0806ff62e3c96499699e9cbd8140ca31cb8ed2f053144483</citedby><cites>FETCH-LOGICAL-c428t-1b302d18f65a64c4d0806ff62e3c96499699e9cbd8140ca31cb8ed2f053144483</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0017931019343996$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Rahman, Aevelina</creatorcontrib><creatorcontrib>Tafti, Danesh</creatorcontrib><title>Characterization of heat transfer enhancement for an oscillating flat plate-fin</title><title>International journal of heat and mass transfer</title><description>•Infinitesimally thin plate-fin vibration is investigated at Re = 100, Pr = 0.71.•Study covers 0.25 ≤ k ≤ 16 and 0.03 ≤ h ≤ 8 giving plunge velocities 0.25 ≤ kh ≤ 4.•Nusselt number shows strong dependence on kh only, not on individual k and h.•Nusselt number (Nu) increases monotonically with kh.•Nusselt number is parameterized as a function of kh. Heat transfer augmentation is of paramount importance in energy transfer and storage systems and the idea of using the inherent vibrations in a system to enhance heat transfer needs to be thoroughly researched upon. The current study numerically investigates an infinitesimally thin plate-fin undergoing forced oscillations over a range of amplitudes and frequencies in the presence of an approach flow. Reduced frequencies of 0.25 ≤ k ≤ 16 and plunge amplitudes of 0.03125 ≤ h ≤ 8 are investigated at Re = 100 and Pr = 0.71. It is shown that the combined effect of frequency and amplitude on heat transfer enhancement can be accounted for as a single parameter “plunge velocity” (0.25 ≤ kh ≤ 4) instead of the individual frequency and amplitude values. For kh &gt; 0.5 a significant increase in Nusselt number (Nu) is observed compared to a stationary plate. With increasing kh or more vigorous oscillations, the increase in Nu becomes more prominent and similar trends and comparable magnitudes were observed for a constant kh value. Unlike the hydrodynamic counterpart of the study, both Leading Edge Vortices (LEVs) and Trailing Edge Vortices (TEVs) are found to act positively to induce enhanced heat transfer on the plate. Finally, the dependence of heat transfer augmentation on the frequency and amplitude of vibration is quantified with a simple parameterization for a plate-fin in a fluid medium.</description><subject>Amplitudes</subject><subject>Augmentation</subject><subject>Computational fluid dynamics</subject><subject>Energy storage</subject><subject>Energy transfer</subject><subject>Flat plates</subject><subject>Fluid flow</subject><subject>Heat transfer</subject><subject>Heat transfer enhancement</subject><subject>Low Reynolds number</subject><subject>Oscillating flat plate-fin</subject><subject>Oscillations</subject><subject>Parameterization</subject><subject>Plate-Fin</subject><subject>Plunge velocity</subject><subject>Storage systems</subject><subject>Thin plates</subject><subject>Vortices</subject><issn>0017-9310</issn><issn>1879-2189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqNkE1PAyEQhonRxFr9DyRevOzKAKXLTdP4mSa96JlQFiyblq1ATfTXy2b15MXLTAbePJN5ELoCUgMBcd3VvttYnXc6pRx1SM7GmhKQNYAkBI7QBJq5rCg08hhNysu8kgzIKTpLqRtGwsUErRYbHbXJNvovnX0fcO_wwMW_UGzDRgdjdzZk7PqIdckk47fbkg9v2JWO96XYyvlwjk6c3iZ78dOn6PX-7mXxWC1XD0-L22VlOG1yBWtGaAuNEzMtuOEtaYhwTlDLjBRcSiGllWbdNsCJ0QzMurEtdWTGgHPesCm6HLn72L8fbMqq6w8xlJWKshllAijQkroZUyb2KUXr1D76nY6fCogaNKpO_dWoBo1q1FgQzyPClms-fPktt9vio_XRmqza3v8f9g2Lrof6</recordid><startdate>202002</startdate><enddate>202002</enddate><creator>Rahman, Aevelina</creator><creator>Tafti, Danesh</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>202002</creationdate><title>Characterization of heat transfer enhancement for an oscillating flat plate-fin</title><author>Rahman, Aevelina ; Tafti, Danesh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-1b302d18f65a64c4d0806ff62e3c96499699e9cbd8140ca31cb8ed2f053144483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Amplitudes</topic><topic>Augmentation</topic><topic>Computational fluid dynamics</topic><topic>Energy storage</topic><topic>Energy transfer</topic><topic>Flat plates</topic><topic>Fluid flow</topic><topic>Heat transfer</topic><topic>Heat transfer enhancement</topic><topic>Low Reynolds number</topic><topic>Oscillating flat plate-fin</topic><topic>Oscillations</topic><topic>Parameterization</topic><topic>Plate-Fin</topic><topic>Plunge velocity</topic><topic>Storage systems</topic><topic>Thin plates</topic><topic>Vortices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rahman, Aevelina</creatorcontrib><creatorcontrib>Tafti, Danesh</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal of heat and mass transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rahman, Aevelina</au><au>Tafti, Danesh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterization of heat transfer enhancement for an oscillating flat plate-fin</atitle><jtitle>International journal of heat and mass transfer</jtitle><date>2020-02</date><risdate>2020</risdate><volume>147</volume><spage>119001</spage><pages>119001-</pages><artnum>119001</artnum><issn>0017-9310</issn><eissn>1879-2189</eissn><abstract>•Infinitesimally thin plate-fin vibration is investigated at Re = 100, Pr = 0.71.•Study covers 0.25 ≤ k ≤ 16 and 0.03 ≤ h ≤ 8 giving plunge velocities 0.25 ≤ kh ≤ 4.•Nusselt number shows strong dependence on kh only, not on individual k and h.•Nusselt number (Nu) increases monotonically with kh.•Nusselt number is parameterized as a function of kh. Heat transfer augmentation is of paramount importance in energy transfer and storage systems and the idea of using the inherent vibrations in a system to enhance heat transfer needs to be thoroughly researched upon. The current study numerically investigates an infinitesimally thin plate-fin undergoing forced oscillations over a range of amplitudes and frequencies in the presence of an approach flow. Reduced frequencies of 0.25 ≤ k ≤ 16 and plunge amplitudes of 0.03125 ≤ h ≤ 8 are investigated at Re = 100 and Pr = 0.71. It is shown that the combined effect of frequency and amplitude on heat transfer enhancement can be accounted for as a single parameter “plunge velocity” (0.25 ≤ kh ≤ 4) instead of the individual frequency and amplitude values. For kh &gt; 0.5 a significant increase in Nusselt number (Nu) is observed compared to a stationary plate. With increasing kh or more vigorous oscillations, the increase in Nu becomes more prominent and similar trends and comparable magnitudes were observed for a constant kh value. Unlike the hydrodynamic counterpart of the study, both Leading Edge Vortices (LEVs) and Trailing Edge Vortices (TEVs) are found to act positively to induce enhanced heat transfer on the plate. Finally, the dependence of heat transfer augmentation on the frequency and amplitude of vibration is quantified with a simple parameterization for a plate-fin in a fluid medium.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijheatmasstransfer.2019.119001</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0017-9310
ispartof International journal of heat and mass transfer, 2020-02, Vol.147, p.119001, Article 119001
issn 0017-9310
1879-2189
language eng
recordid cdi_proquest_journals_2352361212
source Elsevier ScienceDirect Journals
subjects Amplitudes
Augmentation
Computational fluid dynamics
Energy storage
Energy transfer
Flat plates
Fluid flow
Heat transfer
Heat transfer enhancement
Low Reynolds number
Oscillating flat plate-fin
Oscillations
Parameterization
Plate-Fin
Plunge velocity
Storage systems
Thin plates
Vortices
title Characterization of heat transfer enhancement for an oscillating flat plate-fin
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T04%3A56%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterization%20of%20heat%20transfer%20enhancement%20for%20an%20oscillating%20flat%20plate-fin&rft.jtitle=International%20journal%20of%20heat%20and%20mass%20transfer&rft.au=Rahman,%20Aevelina&rft.date=2020-02&rft.volume=147&rft.spage=119001&rft.pages=119001-&rft.artnum=119001&rft.issn=0017-9310&rft.eissn=1879-2189&rft_id=info:doi/10.1016/j.ijheatmasstransfer.2019.119001&rft_dat=%3Cproquest_cross%3E2352361212%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2352361212&rft_id=info:pmid/&rft_els_id=S0017931019343996&rfr_iscdi=true