Characterization of heat transfer enhancement for an oscillating flat plate-fin
•Infinitesimally thin plate-fin vibration is investigated at Re = 100, Pr = 0.71.•Study covers 0.25 ≤ k ≤ 16 and 0.03 ≤ h ≤ 8 giving plunge velocities 0.25 ≤ kh ≤ 4.•Nusselt number shows strong dependence on kh only, not on individual k and h.•Nusselt number (Nu) increases monotonically with kh.•Nus...
Gespeichert in:
Veröffentlicht in: | International journal of heat and mass transfer 2020-02, Vol.147, p.119001, Article 119001 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 119001 |
container_title | International journal of heat and mass transfer |
container_volume | 147 |
creator | Rahman, Aevelina Tafti, Danesh |
description | •Infinitesimally thin plate-fin vibration is investigated at Re = 100, Pr = 0.71.•Study covers 0.25 ≤ k ≤ 16 and 0.03 ≤ h ≤ 8 giving plunge velocities 0.25 ≤ kh ≤ 4.•Nusselt number shows strong dependence on kh only, not on individual k and h.•Nusselt number (Nu) increases monotonically with kh.•Nusselt number is parameterized as a function of kh.
Heat transfer augmentation is of paramount importance in energy transfer and storage systems and the idea of using the inherent vibrations in a system to enhance heat transfer needs to be thoroughly researched upon. The current study numerically investigates an infinitesimally thin plate-fin undergoing forced oscillations over a range of amplitudes and frequencies in the presence of an approach flow. Reduced frequencies of 0.25 ≤ k ≤ 16 and plunge amplitudes of 0.03125 ≤ h ≤ 8 are investigated at Re = 100 and Pr = 0.71. It is shown that the combined effect of frequency and amplitude on heat transfer enhancement can be accounted for as a single parameter “plunge velocity” (0.25 ≤ kh ≤ 4) instead of the individual frequency and amplitude values. For kh > 0.5 a significant increase in Nusselt number (Nu) is observed compared to a stationary plate. With increasing kh or more vigorous oscillations, the increase in Nu becomes more prominent and similar trends and comparable magnitudes were observed for a constant kh value. Unlike the hydrodynamic counterpart of the study, both Leading Edge Vortices (LEVs) and Trailing Edge Vortices (TEVs) are found to act positively to induce enhanced heat transfer on the plate. Finally, the dependence of heat transfer augmentation on the frequency and amplitude of vibration is quantified with a simple parameterization for a plate-fin in a fluid medium. |
doi_str_mv | 10.1016/j.ijheatmasstransfer.2019.119001 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2352361212</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0017931019343996</els_id><sourcerecordid>2352361212</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-1b302d18f65a64c4d0806ff62e3c96499699e9cbd8140ca31cb8ed2f053144483</originalsourceid><addsrcrecordid>eNqNkE1PAyEQhonRxFr9DyRevOzKAKXLTdP4mSa96JlQFiyblq1ATfTXy2b15MXLTAbePJN5ELoCUgMBcd3VvttYnXc6pRx1SM7GmhKQNYAkBI7QBJq5rCg08hhNysu8kgzIKTpLqRtGwsUErRYbHbXJNvovnX0fcO_wwMW_UGzDRgdjdzZk7PqIdckk47fbkg9v2JWO96XYyvlwjk6c3iZ78dOn6PX-7mXxWC1XD0-L22VlOG1yBWtGaAuNEzMtuOEtaYhwTlDLjBRcSiGllWbdNsCJ0QzMurEtdWTGgHPesCm6HLn72L8fbMqq6w8xlJWKshllAijQkroZUyb2KUXr1D76nY6fCogaNKpO_dWoBo1q1FgQzyPClms-fPktt9vio_XRmqza3v8f9g2Lrof6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2352361212</pqid></control><display><type>article</type><title>Characterization of heat transfer enhancement for an oscillating flat plate-fin</title><source>Elsevier ScienceDirect Journals</source><creator>Rahman, Aevelina ; Tafti, Danesh</creator><creatorcontrib>Rahman, Aevelina ; Tafti, Danesh</creatorcontrib><description>•Infinitesimally thin plate-fin vibration is investigated at Re = 100, Pr = 0.71.•Study covers 0.25 ≤ k ≤ 16 and 0.03 ≤ h ≤ 8 giving plunge velocities 0.25 ≤ kh ≤ 4.•Nusselt number shows strong dependence on kh only, not on individual k and h.•Nusselt number (Nu) increases monotonically with kh.•Nusselt number is parameterized as a function of kh.
Heat transfer augmentation is of paramount importance in energy transfer and storage systems and the idea of using the inherent vibrations in a system to enhance heat transfer needs to be thoroughly researched upon. The current study numerically investigates an infinitesimally thin plate-fin undergoing forced oscillations over a range of amplitudes and frequencies in the presence of an approach flow. Reduced frequencies of 0.25 ≤ k ≤ 16 and plunge amplitudes of 0.03125 ≤ h ≤ 8 are investigated at Re = 100 and Pr = 0.71. It is shown that the combined effect of frequency and amplitude on heat transfer enhancement can be accounted for as a single parameter “plunge velocity” (0.25 ≤ kh ≤ 4) instead of the individual frequency and amplitude values. For kh > 0.5 a significant increase in Nusselt number (Nu) is observed compared to a stationary plate. With increasing kh or more vigorous oscillations, the increase in Nu becomes more prominent and similar trends and comparable magnitudes were observed for a constant kh value. Unlike the hydrodynamic counterpart of the study, both Leading Edge Vortices (LEVs) and Trailing Edge Vortices (TEVs) are found to act positively to induce enhanced heat transfer on the plate. Finally, the dependence of heat transfer augmentation on the frequency and amplitude of vibration is quantified with a simple parameterization for a plate-fin in a fluid medium.</description><identifier>ISSN: 0017-9310</identifier><identifier>EISSN: 1879-2189</identifier><identifier>DOI: 10.1016/j.ijheatmasstransfer.2019.119001</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Amplitudes ; Augmentation ; Computational fluid dynamics ; Energy storage ; Energy transfer ; Flat plates ; Fluid flow ; Heat transfer ; Heat transfer enhancement ; Low Reynolds number ; Oscillating flat plate-fin ; Oscillations ; Parameterization ; Plate-Fin ; Plunge velocity ; Storage systems ; Thin plates ; Vortices</subject><ispartof>International journal of heat and mass transfer, 2020-02, Vol.147, p.119001, Article 119001</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright Elsevier BV Feb 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-1b302d18f65a64c4d0806ff62e3c96499699e9cbd8140ca31cb8ed2f053144483</citedby><cites>FETCH-LOGICAL-c428t-1b302d18f65a64c4d0806ff62e3c96499699e9cbd8140ca31cb8ed2f053144483</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0017931019343996$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Rahman, Aevelina</creatorcontrib><creatorcontrib>Tafti, Danesh</creatorcontrib><title>Characterization of heat transfer enhancement for an oscillating flat plate-fin</title><title>International journal of heat and mass transfer</title><description>•Infinitesimally thin plate-fin vibration is investigated at Re = 100, Pr = 0.71.•Study covers 0.25 ≤ k ≤ 16 and 0.03 ≤ h ≤ 8 giving plunge velocities 0.25 ≤ kh ≤ 4.•Nusselt number shows strong dependence on kh only, not on individual k and h.•Nusselt number (Nu) increases monotonically with kh.•Nusselt number is parameterized as a function of kh.
Heat transfer augmentation is of paramount importance in energy transfer and storage systems and the idea of using the inherent vibrations in a system to enhance heat transfer needs to be thoroughly researched upon. The current study numerically investigates an infinitesimally thin plate-fin undergoing forced oscillations over a range of amplitudes and frequencies in the presence of an approach flow. Reduced frequencies of 0.25 ≤ k ≤ 16 and plunge amplitudes of 0.03125 ≤ h ≤ 8 are investigated at Re = 100 and Pr = 0.71. It is shown that the combined effect of frequency and amplitude on heat transfer enhancement can be accounted for as a single parameter “plunge velocity” (0.25 ≤ kh ≤ 4) instead of the individual frequency and amplitude values. For kh > 0.5 a significant increase in Nusselt number (Nu) is observed compared to a stationary plate. With increasing kh or more vigorous oscillations, the increase in Nu becomes more prominent and similar trends and comparable magnitudes were observed for a constant kh value. Unlike the hydrodynamic counterpart of the study, both Leading Edge Vortices (LEVs) and Trailing Edge Vortices (TEVs) are found to act positively to induce enhanced heat transfer on the plate. Finally, the dependence of heat transfer augmentation on the frequency and amplitude of vibration is quantified with a simple parameterization for a plate-fin in a fluid medium.</description><subject>Amplitudes</subject><subject>Augmentation</subject><subject>Computational fluid dynamics</subject><subject>Energy storage</subject><subject>Energy transfer</subject><subject>Flat plates</subject><subject>Fluid flow</subject><subject>Heat transfer</subject><subject>Heat transfer enhancement</subject><subject>Low Reynolds number</subject><subject>Oscillating flat plate-fin</subject><subject>Oscillations</subject><subject>Parameterization</subject><subject>Plate-Fin</subject><subject>Plunge velocity</subject><subject>Storage systems</subject><subject>Thin plates</subject><subject>Vortices</subject><issn>0017-9310</issn><issn>1879-2189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqNkE1PAyEQhonRxFr9DyRevOzKAKXLTdP4mSa96JlQFiyblq1ATfTXy2b15MXLTAbePJN5ELoCUgMBcd3VvttYnXc6pRx1SM7GmhKQNYAkBI7QBJq5rCg08hhNysu8kgzIKTpLqRtGwsUErRYbHbXJNvovnX0fcO_wwMW_UGzDRgdjdzZk7PqIdckk47fbkg9v2JWO96XYyvlwjk6c3iZ78dOn6PX-7mXxWC1XD0-L22VlOG1yBWtGaAuNEzMtuOEtaYhwTlDLjBRcSiGllWbdNsCJ0QzMurEtdWTGgHPesCm6HLn72L8fbMqq6w8xlJWKshllAijQkroZUyb2KUXr1D76nY6fCogaNKpO_dWoBo1q1FgQzyPClms-fPktt9vio_XRmqza3v8f9g2Lrof6</recordid><startdate>202002</startdate><enddate>202002</enddate><creator>Rahman, Aevelina</creator><creator>Tafti, Danesh</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>202002</creationdate><title>Characterization of heat transfer enhancement for an oscillating flat plate-fin</title><author>Rahman, Aevelina ; Tafti, Danesh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-1b302d18f65a64c4d0806ff62e3c96499699e9cbd8140ca31cb8ed2f053144483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Amplitudes</topic><topic>Augmentation</topic><topic>Computational fluid dynamics</topic><topic>Energy storage</topic><topic>Energy transfer</topic><topic>Flat plates</topic><topic>Fluid flow</topic><topic>Heat transfer</topic><topic>Heat transfer enhancement</topic><topic>Low Reynolds number</topic><topic>Oscillating flat plate-fin</topic><topic>Oscillations</topic><topic>Parameterization</topic><topic>Plate-Fin</topic><topic>Plunge velocity</topic><topic>Storage systems</topic><topic>Thin plates</topic><topic>Vortices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rahman, Aevelina</creatorcontrib><creatorcontrib>Tafti, Danesh</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal of heat and mass transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rahman, Aevelina</au><au>Tafti, Danesh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterization of heat transfer enhancement for an oscillating flat plate-fin</atitle><jtitle>International journal of heat and mass transfer</jtitle><date>2020-02</date><risdate>2020</risdate><volume>147</volume><spage>119001</spage><pages>119001-</pages><artnum>119001</artnum><issn>0017-9310</issn><eissn>1879-2189</eissn><abstract>•Infinitesimally thin plate-fin vibration is investigated at Re = 100, Pr = 0.71.•Study covers 0.25 ≤ k ≤ 16 and 0.03 ≤ h ≤ 8 giving plunge velocities 0.25 ≤ kh ≤ 4.•Nusselt number shows strong dependence on kh only, not on individual k and h.•Nusselt number (Nu) increases monotonically with kh.•Nusselt number is parameterized as a function of kh.
Heat transfer augmentation is of paramount importance in energy transfer and storage systems and the idea of using the inherent vibrations in a system to enhance heat transfer needs to be thoroughly researched upon. The current study numerically investigates an infinitesimally thin plate-fin undergoing forced oscillations over a range of amplitudes and frequencies in the presence of an approach flow. Reduced frequencies of 0.25 ≤ k ≤ 16 and plunge amplitudes of 0.03125 ≤ h ≤ 8 are investigated at Re = 100 and Pr = 0.71. It is shown that the combined effect of frequency and amplitude on heat transfer enhancement can be accounted for as a single parameter “plunge velocity” (0.25 ≤ kh ≤ 4) instead of the individual frequency and amplitude values. For kh > 0.5 a significant increase in Nusselt number (Nu) is observed compared to a stationary plate. With increasing kh or more vigorous oscillations, the increase in Nu becomes more prominent and similar trends and comparable magnitudes were observed for a constant kh value. Unlike the hydrodynamic counterpart of the study, both Leading Edge Vortices (LEVs) and Trailing Edge Vortices (TEVs) are found to act positively to induce enhanced heat transfer on the plate. Finally, the dependence of heat transfer augmentation on the frequency and amplitude of vibration is quantified with a simple parameterization for a plate-fin in a fluid medium.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijheatmasstransfer.2019.119001</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0017-9310 |
ispartof | International journal of heat and mass transfer, 2020-02, Vol.147, p.119001, Article 119001 |
issn | 0017-9310 1879-2189 |
language | eng |
recordid | cdi_proquest_journals_2352361212 |
source | Elsevier ScienceDirect Journals |
subjects | Amplitudes Augmentation Computational fluid dynamics Energy storage Energy transfer Flat plates Fluid flow Heat transfer Heat transfer enhancement Low Reynolds number Oscillating flat plate-fin Oscillations Parameterization Plate-Fin Plunge velocity Storage systems Thin plates Vortices |
title | Characterization of heat transfer enhancement for an oscillating flat plate-fin |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T04%3A56%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterization%20of%20heat%20transfer%20enhancement%20for%20an%20oscillating%20flat%20plate-fin&rft.jtitle=International%20journal%20of%20heat%20and%20mass%20transfer&rft.au=Rahman,%20Aevelina&rft.date=2020-02&rft.volume=147&rft.spage=119001&rft.pages=119001-&rft.artnum=119001&rft.issn=0017-9310&rft.eissn=1879-2189&rft_id=info:doi/10.1016/j.ijheatmasstransfer.2019.119001&rft_dat=%3Cproquest_cross%3E2352361212%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2352361212&rft_id=info:pmid/&rft_els_id=S0017931019343996&rfr_iscdi=true |