The lithiation process and Li diffusion in amorphous SiO2 and Si from first-principles

Silicon is considered the next-generation, high-capacity anode for Li-ion energy storage applications, however, despite significant effort, there are still uncertainties regarding the bulk Si and surface SiO2 structural and chemical evolution as it undergoes lithiation and amorphization. In this pap...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electrochimica acta 2020-01, Vol.331, p.1, Article 135344
Hauptverfasser: Sivonxay, Eric, Aykol, Muratahan, Persson, Kristin A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 1
container_title Electrochimica acta
container_volume 331
creator Sivonxay, Eric
Aykol, Muratahan
Persson, Kristin A.
description Silicon is considered the next-generation, high-capacity anode for Li-ion energy storage applications, however, despite significant effort, there are still uncertainties regarding the bulk Si and surface SiO2 structural and chemical evolution as it undergoes lithiation and amorphization. In this paper, we present first-principles calculations of the evolution of the amorphous Si anode, including its oxide surface layer, as a function of Li concentration. We benchmark our methodology by comparing the results for the Si bulk to existing experimental evidence of local structure evolution, ionic diffusivity as well as electrochemical activity. Recognizing the important role of the surface Si oxide (either native or artificially grown), we undertake the same calculations for amorphous SiO2, analyzing its potential impact on the activity of Si anode materials. Derived voltage curves for the amorphous phases compare well to experimental results, highlighting that SiO2 lithiates at approximately 0.7 V higher than Si in the low Li concentration regime, which provides an important electrochemical fingerprint. The combined evidence suggests that i) the inherent diffusivity of amorphous Si is high (in the order 10−9cm2s−1 - 10−7cm2s−1), ii) SiO2 is thermodynamically driven to lithiate, such that Li–O local environments are increasingly favored as compared to Si–O bonding, iii) the ionic diffusivity of Li in LiySiO2 is initially two orders of magnitude lower than that of LiySi at low Li concentrations but increases rapidly with increasing Li content and iv) the final lithiation product of SiO2 is Li2O and highly lithiated silicides. Hence, this work suggests that - excluding explicit interactions with the electrolyte - the SiO2 surface layer presents a kinetic impediment for the lithiation of Si and a sink for Li inventory, resulting in non-reversible capacity loss through strong local Li–O bond formation. [Display omitted]
doi_str_mv 10.1016/j.electacta.2019.135344
format Article
fullrecord <record><control><sourceid>proquest_elsev</sourceid><recordid>TN_cdi_proquest_journals_2352359697</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0013468619322169</els_id><sourcerecordid>2352359697</sourcerecordid><originalsourceid>FETCH-LOGICAL-e241t-d4b38518400566ecbc78c31a95fc5d02cfafa033fc72af8061cfcb0b5d8b41ba3</originalsourceid><addsrcrecordid>eNo9kNFKwzAUhoMoOKfPYMDr1pMmTdvLMdQJg11sehvSNGGndG1NWp_fzInww7k4H-f8fIQ8MkgZMPncprazZtIxaQasShnPuRBXZMHKgie8zKtrsgBgPBGylLfkLoQWAApZwIJ8Ho6WdjgdUU849HT0g7EhUN03dIu0QefmcF5gT_Vp8ONxmAPd4y77RfZInR9O1KEPUzJ67A2OnQ335MbpLtiHv7kkH68vh_Um2e7e3terbWIzwaakEXXsx0oBkEtpTW2K0nCmq9yZvIHMOO00cO5MkWlXgmTGmRrqvClrwWrNl-Tpcjf2_pptmFQ7zL6PL1XG85hKVkWkVhfKxirfaL0KBm1vbIM-qlPNgIqBOutUrfrXqc461UUn_wGlWG03</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2352359697</pqid></control><display><type>article</type><title>The lithiation process and Li diffusion in amorphous SiO2 and Si from first-principles</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Sivonxay, Eric ; Aykol, Muratahan ; Persson, Kristin A.</creator><creatorcontrib>Sivonxay, Eric ; Aykol, Muratahan ; Persson, Kristin A.</creatorcontrib><description>Silicon is considered the next-generation, high-capacity anode for Li-ion energy storage applications, however, despite significant effort, there are still uncertainties regarding the bulk Si and surface SiO2 structural and chemical evolution as it undergoes lithiation and amorphization. In this paper, we present first-principles calculations of the evolution of the amorphous Si anode, including its oxide surface layer, as a function of Li concentration. We benchmark our methodology by comparing the results for the Si bulk to existing experimental evidence of local structure evolution, ionic diffusivity as well as electrochemical activity. Recognizing the important role of the surface Si oxide (either native or artificially grown), we undertake the same calculations for amorphous SiO2, analyzing its potential impact on the activity of Si anode materials. Derived voltage curves for the amorphous phases compare well to experimental results, highlighting that SiO2 lithiates at approximately 0.7 V higher than Si in the low Li concentration regime, which provides an important electrochemical fingerprint. The combined evidence suggests that i) the inherent diffusivity of amorphous Si is high (in the order 10−9cm2s−1 - 10−7cm2s−1), ii) SiO2 is thermodynamically driven to lithiate, such that Li–O local environments are increasingly favored as compared to Si–O bonding, iii) the ionic diffusivity of Li in LiySiO2 is initially two orders of magnitude lower than that of LiySi at low Li concentrations but increases rapidly with increasing Li content and iv) the final lithiation product of SiO2 is Li2O and highly lithiated silicides. Hence, this work suggests that - excluding explicit interactions with the electrolyte - the SiO2 surface layer presents a kinetic impediment for the lithiation of Si and a sink for Li inventory, resulting in non-reversible capacity loss through strong local Li–O bond formation. [Display omitted]</description><identifier>ISSN: 0013-4686</identifier><identifier>EISSN: 1873-3859</identifier><identifier>DOI: 10.1016/j.electacta.2019.135344</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Ab-initio molecular dynamics ; Activity recognition ; Alloy anodes ; Amorphization ; Amorphous materials ; Amorphous silicon ; Anodes ; Chemical evolution ; Density functional theory calculations ; Diffusivity ; Electrode materials ; Energy storage ; First principles ; Impact analysis ; Li-Ion batteries ; Lithium oxides ; Mathematical analysis ; Organic chemistry ; Silicides ; Silicon anode ; Silicon dioxide ; Surface layers</subject><ispartof>Electrochimica acta, 2020-01, Vol.331, p.1, Article 135344</ispartof><rights>2019</rights><rights>Copyright Elsevier BV Jan 20, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.electacta.2019.135344$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Sivonxay, Eric</creatorcontrib><creatorcontrib>Aykol, Muratahan</creatorcontrib><creatorcontrib>Persson, Kristin A.</creatorcontrib><title>The lithiation process and Li diffusion in amorphous SiO2 and Si from first-principles</title><title>Electrochimica acta</title><description>Silicon is considered the next-generation, high-capacity anode for Li-ion energy storage applications, however, despite significant effort, there are still uncertainties regarding the bulk Si and surface SiO2 structural and chemical evolution as it undergoes lithiation and amorphization. In this paper, we present first-principles calculations of the evolution of the amorphous Si anode, including its oxide surface layer, as a function of Li concentration. We benchmark our methodology by comparing the results for the Si bulk to existing experimental evidence of local structure evolution, ionic diffusivity as well as electrochemical activity. Recognizing the important role of the surface Si oxide (either native or artificially grown), we undertake the same calculations for amorphous SiO2, analyzing its potential impact on the activity of Si anode materials. Derived voltage curves for the amorphous phases compare well to experimental results, highlighting that SiO2 lithiates at approximately 0.7 V higher than Si in the low Li concentration regime, which provides an important electrochemical fingerprint. The combined evidence suggests that i) the inherent diffusivity of amorphous Si is high (in the order 10−9cm2s−1 - 10−7cm2s−1), ii) SiO2 is thermodynamically driven to lithiate, such that Li–O local environments are increasingly favored as compared to Si–O bonding, iii) the ionic diffusivity of Li in LiySiO2 is initially two orders of magnitude lower than that of LiySi at low Li concentrations but increases rapidly with increasing Li content and iv) the final lithiation product of SiO2 is Li2O and highly lithiated silicides. Hence, this work suggests that - excluding explicit interactions with the electrolyte - the SiO2 surface layer presents a kinetic impediment for the lithiation of Si and a sink for Li inventory, resulting in non-reversible capacity loss through strong local Li–O bond formation. [Display omitted]</description><subject>Ab-initio molecular dynamics</subject><subject>Activity recognition</subject><subject>Alloy anodes</subject><subject>Amorphization</subject><subject>Amorphous materials</subject><subject>Amorphous silicon</subject><subject>Anodes</subject><subject>Chemical evolution</subject><subject>Density functional theory calculations</subject><subject>Diffusivity</subject><subject>Electrode materials</subject><subject>Energy storage</subject><subject>First principles</subject><subject>Impact analysis</subject><subject>Li-Ion batteries</subject><subject>Lithium oxides</subject><subject>Mathematical analysis</subject><subject>Organic chemistry</subject><subject>Silicides</subject><subject>Silicon anode</subject><subject>Silicon dioxide</subject><subject>Surface layers</subject><issn>0013-4686</issn><issn>1873-3859</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kNFKwzAUhoMoOKfPYMDr1pMmTdvLMdQJg11sehvSNGGndG1NWp_fzInww7k4H-f8fIQ8MkgZMPncprazZtIxaQasShnPuRBXZMHKgie8zKtrsgBgPBGylLfkLoQWAApZwIJ8Ho6WdjgdUU849HT0g7EhUN03dIu0QefmcF5gT_Vp8ONxmAPd4y77RfZInR9O1KEPUzJ67A2OnQ335MbpLtiHv7kkH68vh_Um2e7e3terbWIzwaakEXXsx0oBkEtpTW2K0nCmq9yZvIHMOO00cO5MkWlXgmTGmRrqvClrwWrNl-Tpcjf2_pptmFQ7zL6PL1XG85hKVkWkVhfKxirfaL0KBm1vbIM-qlPNgIqBOutUrfrXqc461UUn_wGlWG03</recordid><startdate>20200120</startdate><enddate>20200120</enddate><creator>Sivonxay, Eric</creator><creator>Aykol, Muratahan</creator><creator>Persson, Kristin A.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>6I.</scope><scope>AAFTH</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20200120</creationdate><title>The lithiation process and Li diffusion in amorphous SiO2 and Si from first-principles</title><author>Sivonxay, Eric ; Aykol, Muratahan ; Persson, Kristin A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-e241t-d4b38518400566ecbc78c31a95fc5d02cfafa033fc72af8061cfcb0b5d8b41ba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Ab-initio molecular dynamics</topic><topic>Activity recognition</topic><topic>Alloy anodes</topic><topic>Amorphization</topic><topic>Amorphous materials</topic><topic>Amorphous silicon</topic><topic>Anodes</topic><topic>Chemical evolution</topic><topic>Density functional theory calculations</topic><topic>Diffusivity</topic><topic>Electrode materials</topic><topic>Energy storage</topic><topic>First principles</topic><topic>Impact analysis</topic><topic>Li-Ion batteries</topic><topic>Lithium oxides</topic><topic>Mathematical analysis</topic><topic>Organic chemistry</topic><topic>Silicides</topic><topic>Silicon anode</topic><topic>Silicon dioxide</topic><topic>Surface layers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sivonxay, Eric</creatorcontrib><creatorcontrib>Aykol, Muratahan</creatorcontrib><creatorcontrib>Persson, Kristin A.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Electrochimica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sivonxay, Eric</au><au>Aykol, Muratahan</au><au>Persson, Kristin A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The lithiation process and Li diffusion in amorphous SiO2 and Si from first-principles</atitle><jtitle>Electrochimica acta</jtitle><date>2020-01-20</date><risdate>2020</risdate><volume>331</volume><spage>1</spage><pages>1-</pages><artnum>135344</artnum><issn>0013-4686</issn><eissn>1873-3859</eissn><abstract>Silicon is considered the next-generation, high-capacity anode for Li-ion energy storage applications, however, despite significant effort, there are still uncertainties regarding the bulk Si and surface SiO2 structural and chemical evolution as it undergoes lithiation and amorphization. In this paper, we present first-principles calculations of the evolution of the amorphous Si anode, including its oxide surface layer, as a function of Li concentration. We benchmark our methodology by comparing the results for the Si bulk to existing experimental evidence of local structure evolution, ionic diffusivity as well as electrochemical activity. Recognizing the important role of the surface Si oxide (either native or artificially grown), we undertake the same calculations for amorphous SiO2, analyzing its potential impact on the activity of Si anode materials. Derived voltage curves for the amorphous phases compare well to experimental results, highlighting that SiO2 lithiates at approximately 0.7 V higher than Si in the low Li concentration regime, which provides an important electrochemical fingerprint. The combined evidence suggests that i) the inherent diffusivity of amorphous Si is high (in the order 10−9cm2s−1 - 10−7cm2s−1), ii) SiO2 is thermodynamically driven to lithiate, such that Li–O local environments are increasingly favored as compared to Si–O bonding, iii) the ionic diffusivity of Li in LiySiO2 is initially two orders of magnitude lower than that of LiySi at low Li concentrations but increases rapidly with increasing Li content and iv) the final lithiation product of SiO2 is Li2O and highly lithiated silicides. Hence, this work suggests that - excluding explicit interactions with the electrolyte - the SiO2 surface layer presents a kinetic impediment for the lithiation of Si and a sink for Li inventory, resulting in non-reversible capacity loss through strong local Li–O bond formation. [Display omitted]</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.electacta.2019.135344</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0013-4686
ispartof Electrochimica acta, 2020-01, Vol.331, p.1, Article 135344
issn 0013-4686
1873-3859
language eng
recordid cdi_proquest_journals_2352359697
source Elsevier ScienceDirect Journals Complete
subjects Ab-initio molecular dynamics
Activity recognition
Alloy anodes
Amorphization
Amorphous materials
Amorphous silicon
Anodes
Chemical evolution
Density functional theory calculations
Diffusivity
Electrode materials
Energy storage
First principles
Impact analysis
Li-Ion batteries
Lithium oxides
Mathematical analysis
Organic chemistry
Silicides
Silicon anode
Silicon dioxide
Surface layers
title The lithiation process and Li diffusion in amorphous SiO2 and Si from first-principles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T08%3A07%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_elsev&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20lithiation%20process%20and%20Li%20diffusion%20in%20amorphous%20SiO2%20and%20Si%20from%20first-principles&rft.jtitle=Electrochimica%20acta&rft.au=Sivonxay,%20Eric&rft.date=2020-01-20&rft.volume=331&rft.spage=1&rft.pages=1-&rft.artnum=135344&rft.issn=0013-4686&rft.eissn=1873-3859&rft_id=info:doi/10.1016/j.electacta.2019.135344&rft_dat=%3Cproquest_elsev%3E2352359697%3C/proquest_elsev%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2352359697&rft_id=info:pmid/&rft_els_id=S0013468619322169&rfr_iscdi=true