Diffusion mechanism and effect of mass transfer limitation during the adsorption of CO2 by polyaspartamide in a packed-bed unit
A systematic study of the diffusion mechanism and effect of mass transfer limitation during the adsorption of CO 2 onto polyaspartamide is presented using a differential adsorption bed method, carried out in a 100 × 60 × 40 mm packed-bed adsorption unit. The rate-limiting step where mass transfer l...
Gespeichert in:
Veröffentlicht in: | International journal of sustainable engineering 2020-01, Vol.13 (1), p.54-67 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 67 |
---|---|
container_issue | 1 |
container_start_page | 54 |
container_title | International journal of sustainable engineering |
container_volume | 13 |
creator | Yoro, Kelvin O. Amosa, Mutiu K. Sekoai, Patrick T. Mulopo, Jean Daramola, Michael O. |
description | A systematic study of the diffusion mechanism and effect of mass transfer limitation during the adsorption of CO
2
onto polyaspartamide is presented using a differential adsorption bed method, carried out in a 100 × 60 × 40 mm packed-bed adsorption unit. The rate-limiting step where mass transfer limitation is dominant was studied using diffusion models. It was observed that intraparticle diffusion mechanism is the major contributor to the resistance offered to the transport of gas molecule through polyaspartamide. The behaviour of polyaspartamide, based on the intraparticle diffusion rate parameter derived from the plots of CO
2
adsorbed versus the square root of time, signified that the adsorption mechanism involved both film and intraparticle diffusion. The intraparticle diffusion parameter (kid) obtained was dependent on temperature as well as intraparticle convection effects and ranged from 1.24 × 10
−4
to 2.13 × 10
−4
ms
−1
. The Biot number (Bi) values were all greater than 10 (ranged from 17.80 - 30.74), confirming that the intraparticle diffusion was the rate-limiting step and heat transfer is more by conduction from the gas film layer than convection within the pores of polyaspartamide. Results from this study provide an important basis for future scale-up and optimisation of CO
2
capture process using polyaspartamide. |
doi_str_mv | 10.1080/19397038.2019.1592261 |
format | Article |
fullrecord | <record><control><sourceid>proquest_infor</sourceid><recordid>TN_cdi_proquest_journals_2352332800</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_5117ef71af524699a6af5d49d99401a2</doaj_id><sourcerecordid>2352332800</sourcerecordid><originalsourceid>FETCH-LOGICAL-d306t-64e5948f6c392280fc1e620288a7983d03b1b950418c57c441ed09afb27233763</originalsourceid><addsrcrecordid>eNo9UctuFDEQHCGQCCGfEMkS59n4NR77BloeiRQpFzhbPX4kXmbswfYI7Ylfx5sNnLpVqq6u7uq6a4J3BEt8QxRTI2ZyRzFROzIoSgV51V2c8H7EXLz-3zP5tntXygFj0UjqovvzOXi_lZAiWpx5ghjKgiBa5Lx3pqLk0QKloJohFu8ymsMSKtTTgN1yiI-oPjkEtqS8PqNtYv9A0XREa5qPUFbIFZZgHQoRAVrB_HS2n5xFWwz1fffGw1zc1Uu97H58_fJ9f9vfP3y723-67y3DovaCu0Fx6YVh7TqJvSFOUEylhFFJZjGbyKQGzIk0w2g4J85iBX6iI2VsFOyyuzvr2gQHveawQD7qBEE_Ayk_6uYzmNnpgZDR-ZGAHygXSoFoneXKKsUxAdq0Ppy11px-ba5UfUhbjs2-pmxo-5pB3Fgfz6wQfcoL_E55trrCcU7Zt2-aUDQjWJ8i1P8i1KcI9UuE7C9-DY50</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2352332800</pqid></control><display><type>article</type><title>Diffusion mechanism and effect of mass transfer limitation during the adsorption of CO2 by polyaspartamide in a packed-bed unit</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Yoro, Kelvin O. ; Amosa, Mutiu K. ; Sekoai, Patrick T. ; Mulopo, Jean ; Daramola, Michael O.</creator><creatorcontrib>Yoro, Kelvin O. ; Amosa, Mutiu K. ; Sekoai, Patrick T. ; Mulopo, Jean ; Daramola, Michael O.</creatorcontrib><description>A systematic study of the diffusion mechanism and effect of mass transfer limitation during the adsorption of CO
2
onto polyaspartamide is presented using a differential adsorption bed method, carried out in a 100 × 60 × 40 mm packed-bed adsorption unit. The rate-limiting step where mass transfer limitation is dominant was studied using diffusion models. It was observed that intraparticle diffusion mechanism is the major contributor to the resistance offered to the transport of gas molecule through polyaspartamide. The behaviour of polyaspartamide, based on the intraparticle diffusion rate parameter derived from the plots of CO
2
adsorbed versus the square root of time, signified that the adsorption mechanism involved both film and intraparticle diffusion. The intraparticle diffusion parameter (kid) obtained was dependent on temperature as well as intraparticle convection effects and ranged from 1.24 × 10
−4
to 2.13 × 10
−4
ms
−1
. The Biot number (Bi) values were all greater than 10 (ranged from 17.80 - 30.74), confirming that the intraparticle diffusion was the rate-limiting step and heat transfer is more by conduction from the gas film layer than convection within the pores of polyaspartamide. Results from this study provide an important basis for future scale-up and optimisation of CO
2
capture process using polyaspartamide.</description><identifier>ISSN: 1939-7038</identifier><identifier>EISSN: 1939-7046</identifier><identifier>DOI: 10.1080/19397038.2019.1592261</identifier><language>eng</language><publisher>Abingdon: Taylor & Francis</publisher><subject>Adsorption ; Biot number ; capture ; Carbon dioxide ; Carbon sequestration ; co2 capture ; Conduction ; Conduction heating ; Constraining ; Convection ; Diffusion ; Diffusion effects ; diffusion mechanisms ; Diffusion rate ; Heat transfer ; Mass transfer ; Optimization ; Parameters ; Polyaspartamide ; Temperature dependence</subject><ispartof>International journal of sustainable engineering, 2020-01, Vol.13 (1), p.54-67</ispartof><rights>2019 Informa UK Limited, trading as Taylor & Francis Group 2019</rights><rights>2019 Informa UK Limited, trading as Taylor & Francis Group</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-6246-6963 ; 0000-0003-1475-0745 ; 0000-0002-7085-0321</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Yoro, Kelvin O.</creatorcontrib><creatorcontrib>Amosa, Mutiu K.</creatorcontrib><creatorcontrib>Sekoai, Patrick T.</creatorcontrib><creatorcontrib>Mulopo, Jean</creatorcontrib><creatorcontrib>Daramola, Michael O.</creatorcontrib><title>Diffusion mechanism and effect of mass transfer limitation during the adsorption of CO2 by polyaspartamide in a packed-bed unit</title><title>International journal of sustainable engineering</title><description>A systematic study of the diffusion mechanism and effect of mass transfer limitation during the adsorption of CO
2
onto polyaspartamide is presented using a differential adsorption bed method, carried out in a 100 × 60 × 40 mm packed-bed adsorption unit. The rate-limiting step where mass transfer limitation is dominant was studied using diffusion models. It was observed that intraparticle diffusion mechanism is the major contributor to the resistance offered to the transport of gas molecule through polyaspartamide. The behaviour of polyaspartamide, based on the intraparticle diffusion rate parameter derived from the plots of CO
2
adsorbed versus the square root of time, signified that the adsorption mechanism involved both film and intraparticle diffusion. The intraparticle diffusion parameter (kid) obtained was dependent on temperature as well as intraparticle convection effects and ranged from 1.24 × 10
−4
to 2.13 × 10
−4
ms
−1
. The Biot number (Bi) values were all greater than 10 (ranged from 17.80 - 30.74), confirming that the intraparticle diffusion was the rate-limiting step and heat transfer is more by conduction from the gas film layer than convection within the pores of polyaspartamide. Results from this study provide an important basis for future scale-up and optimisation of CO
2
capture process using polyaspartamide.</description><subject>Adsorption</subject><subject>Biot number</subject><subject>capture</subject><subject>Carbon dioxide</subject><subject>Carbon sequestration</subject><subject>co2 capture</subject><subject>Conduction</subject><subject>Conduction heating</subject><subject>Constraining</subject><subject>Convection</subject><subject>Diffusion</subject><subject>Diffusion effects</subject><subject>diffusion mechanisms</subject><subject>Diffusion rate</subject><subject>Heat transfer</subject><subject>Mass transfer</subject><subject>Optimization</subject><subject>Parameters</subject><subject>Polyaspartamide</subject><subject>Temperature dependence</subject><issn>1939-7038</issn><issn>1939-7046</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNo9UctuFDEQHCGQCCGfEMkS59n4NR77BloeiRQpFzhbPX4kXmbswfYI7Ylfx5sNnLpVqq6u7uq6a4J3BEt8QxRTI2ZyRzFROzIoSgV51V2c8H7EXLz-3zP5tntXygFj0UjqovvzOXi_lZAiWpx5ghjKgiBa5Lx3pqLk0QKloJohFu8ymsMSKtTTgN1yiI-oPjkEtqS8PqNtYv9A0XREa5qPUFbIFZZgHQoRAVrB_HS2n5xFWwz1fffGw1zc1Uu97H58_fJ9f9vfP3y723-67y3DovaCu0Fx6YVh7TqJvSFOUEylhFFJZjGbyKQGzIk0w2g4J85iBX6iI2VsFOyyuzvr2gQHveawQD7qBEE_Ayk_6uYzmNnpgZDR-ZGAHygXSoFoneXKKsUxAdq0Ppy11px-ba5UfUhbjs2-pmxo-5pB3Fgfz6wQfcoL_E55trrCcU7Zt2-aUDQjWJ8i1P8i1KcI9UuE7C9-DY50</recordid><startdate>20200102</startdate><enddate>20200102</enddate><creator>Yoro, Kelvin O.</creator><creator>Amosa, Mutiu K.</creator><creator>Sekoai, Patrick T.</creator><creator>Mulopo, Jean</creator><creator>Daramola, Michael O.</creator><general>Taylor & Francis</general><general>Taylor & Francis Ltd</general><general>Taylor & Francis Group</general><scope>7ST</scope><scope>7TB</scope><scope>7U6</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope><scope>SOI</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6246-6963</orcidid><orcidid>https://orcid.org/0000-0003-1475-0745</orcidid><orcidid>https://orcid.org/0000-0002-7085-0321</orcidid></search><sort><creationdate>20200102</creationdate><title>Diffusion mechanism and effect of mass transfer limitation during the adsorption of CO2 by polyaspartamide in a packed-bed unit</title><author>Yoro, Kelvin O. ; Amosa, Mutiu K. ; Sekoai, Patrick T. ; Mulopo, Jean ; Daramola, Michael O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-d306t-64e5948f6c392280fc1e620288a7983d03b1b950418c57c441ed09afb27233763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adsorption</topic><topic>Biot number</topic><topic>capture</topic><topic>Carbon dioxide</topic><topic>Carbon sequestration</topic><topic>co2 capture</topic><topic>Conduction</topic><topic>Conduction heating</topic><topic>Constraining</topic><topic>Convection</topic><topic>Diffusion</topic><topic>Diffusion effects</topic><topic>diffusion mechanisms</topic><topic>Diffusion rate</topic><topic>Heat transfer</topic><topic>Mass transfer</topic><topic>Optimization</topic><topic>Parameters</topic><topic>Polyaspartamide</topic><topic>Temperature dependence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yoro, Kelvin O.</creatorcontrib><creatorcontrib>Amosa, Mutiu K.</creatorcontrib><creatorcontrib>Sekoai, Patrick T.</creatorcontrib><creatorcontrib>Mulopo, Jean</creatorcontrib><creatorcontrib>Daramola, Michael O.</creatorcontrib><collection>Environment Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Environment Abstracts</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>International journal of sustainable engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yoro, Kelvin O.</au><au>Amosa, Mutiu K.</au><au>Sekoai, Patrick T.</au><au>Mulopo, Jean</au><au>Daramola, Michael O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Diffusion mechanism and effect of mass transfer limitation during the adsorption of CO2 by polyaspartamide in a packed-bed unit</atitle><jtitle>International journal of sustainable engineering</jtitle><date>2020-01-02</date><risdate>2020</risdate><volume>13</volume><issue>1</issue><spage>54</spage><epage>67</epage><pages>54-67</pages><issn>1939-7038</issn><eissn>1939-7046</eissn><abstract>A systematic study of the diffusion mechanism and effect of mass transfer limitation during the adsorption of CO
2
onto polyaspartamide is presented using a differential adsorption bed method, carried out in a 100 × 60 × 40 mm packed-bed adsorption unit. The rate-limiting step where mass transfer limitation is dominant was studied using diffusion models. It was observed that intraparticle diffusion mechanism is the major contributor to the resistance offered to the transport of gas molecule through polyaspartamide. The behaviour of polyaspartamide, based on the intraparticle diffusion rate parameter derived from the plots of CO
2
adsorbed versus the square root of time, signified that the adsorption mechanism involved both film and intraparticle diffusion. The intraparticle diffusion parameter (kid) obtained was dependent on temperature as well as intraparticle convection effects and ranged from 1.24 × 10
−4
to 2.13 × 10
−4
ms
−1
. The Biot number (Bi) values were all greater than 10 (ranged from 17.80 - 30.74), confirming that the intraparticle diffusion was the rate-limiting step and heat transfer is more by conduction from the gas film layer than convection within the pores of polyaspartamide. Results from this study provide an important basis for future scale-up and optimisation of CO
2
capture process using polyaspartamide.</abstract><cop>Abingdon</cop><pub>Taylor & Francis</pub><doi>10.1080/19397038.2019.1592261</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-6246-6963</orcidid><orcidid>https://orcid.org/0000-0003-1475-0745</orcidid><orcidid>https://orcid.org/0000-0002-7085-0321</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1939-7038 |
ispartof | International journal of sustainable engineering, 2020-01, Vol.13 (1), p.54-67 |
issn | 1939-7038 1939-7046 |
language | eng |
recordid | cdi_proquest_journals_2352332800 |
source | EZB-FREE-00999 freely available EZB journals |
subjects | Adsorption Biot number capture Carbon dioxide Carbon sequestration co2 capture Conduction Conduction heating Constraining Convection Diffusion Diffusion effects diffusion mechanisms Diffusion rate Heat transfer Mass transfer Optimization Parameters Polyaspartamide Temperature dependence |
title | Diffusion mechanism and effect of mass transfer limitation during the adsorption of CO2 by polyaspartamide in a packed-bed unit |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T02%3A10%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Diffusion%20mechanism%20and%20effect%20of%20mass%20transfer%20limitation%20during%20the%20adsorption%20of%20CO2%20by%20polyaspartamide%20in%20a%20packed-bed%20unit&rft.jtitle=International%20journal%20of%20sustainable%20engineering&rft.au=Yoro,%20Kelvin%20O.&rft.date=2020-01-02&rft.volume=13&rft.issue=1&rft.spage=54&rft.epage=67&rft.pages=54-67&rft.issn=1939-7038&rft.eissn=1939-7046&rft_id=info:doi/10.1080/19397038.2019.1592261&rft_dat=%3Cproquest_infor%3E2352332800%3C/proquest_infor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2352332800&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_5117ef71af524699a6af5d49d99401a2&rfr_iscdi=true |