Convergence analysis of a projection algorithm for variational inequality problems

In this paper, we propose a projection based Newton-type algorithm for solving the variational inequality problems. A comprehensive study is conducted to analyze both global and local convergence properties of the algorithm. In particular, the algorithm is shown to be of superlinear convergence when...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of global optimization 2020-02, Vol.76 (2), p.433-452
Hauptverfasser: Qu, Biao, Wang, Changyu, Meng, Fanwen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 452
container_issue 2
container_start_page 433
container_title Journal of global optimization
container_volume 76
creator Qu, Biao
Wang, Changyu
Meng, Fanwen
description In this paper, we propose a projection based Newton-type algorithm for solving the variational inequality problems. A comprehensive study is conducted to analyze both global and local convergence properties of the algorithm. In particular, the algorithm is shown to be of superlinear convergence when the solution is a regular point. In addition, when the Jacobian matrix of the underlying function is positive definite at the solution or the solution is a non-degenerate point, the algorithm still possesses its superlinear convergence. Compared to the relevant projection algorithms in literature, the proposed algorithm is of remarkable advantages in terms of its generalization and favorable convergence properties under relaxed assumptions.
doi_str_mv 10.1007/s10898-019-00848-0
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2352272278</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A718427366</galeid><sourcerecordid>A718427366</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-fb1b590f5f22115f0ef69497cb2ae58ab50a58edbe16fb9875ce609d201bf6793</originalsourceid><addsrcrecordid>eNp9kN9LwzAQx4MoOKf_gE8Fn6uXtGmSxzH8BQNB9Dmk3aVmtM2WdIP992ZW8E3u4I7j-7k7voTcUrinAOIhUpBK5kBVDiDL1J2RGeWiyJmi1TmZgWI85wD0klzFuAEAJTmbkfelHw4YWhwazMxgumN0MfM2M9k2-A02o_NDZrrWBzd-9Zn1ITuY4MxpbrrMDbjbm86Nx5O-7rCP1-TCmi7izW-dk8-nx4_lS756e35dLlZ5UwIbc1vTmiuw3DJGKbeAtlKlEk3NDHJpag6GS1zXSCtbKyl4gxWoNQNa20qoYk7upr3p8G6PcdQbvw_pqahZwRkTKWVS3U-q1nSo3WD9GEyTYo29a_yA1qX5QlBZMlFUVQLYBDTBxxjQ6m1wvQlHTUGfzNaT2TqZrX_M1pCgYoJiEg8thr9f_qG-AcA4gwA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2352272278</pqid></control><display><type>article</type><title>Convergence analysis of a projection algorithm for variational inequality problems</title><source>SpringerLink Journals</source><creator>Qu, Biao ; Wang, Changyu ; Meng, Fanwen</creator><creatorcontrib>Qu, Biao ; Wang, Changyu ; Meng, Fanwen</creatorcontrib><description>In this paper, we propose a projection based Newton-type algorithm for solving the variational inequality problems. A comprehensive study is conducted to analyze both global and local convergence properties of the algorithm. In particular, the algorithm is shown to be of superlinear convergence when the solution is a regular point. In addition, when the Jacobian matrix of the underlying function is positive definite at the solution or the solution is a non-degenerate point, the algorithm still possesses its superlinear convergence. Compared to the relevant projection algorithms in literature, the proposed algorithm is of remarkable advantages in terms of its generalization and favorable convergence properties under relaxed assumptions.</description><identifier>ISSN: 0925-5001</identifier><identifier>EISSN: 1573-2916</identifier><identifier>DOI: 10.1007/s10898-019-00848-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Comparative analysis ; Computer Science ; Convergence ; Jacobi matrix method ; Jacobian matrix ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Nonlinear programming ; Operations Research/Decision Theory ; Optimization ; Projection ; Real Functions</subject><ispartof>Journal of global optimization, 2020-02, Vol.76 (2), p.433-452</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>COPYRIGHT 2020 Springer</rights><rights>Journal of Global Optimization is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-fb1b590f5f22115f0ef69497cb2ae58ab50a58edbe16fb9875ce609d201bf6793</citedby><cites>FETCH-LOGICAL-c402t-fb1b590f5f22115f0ef69497cb2ae58ab50a58edbe16fb9875ce609d201bf6793</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10898-019-00848-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10898-019-00848-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Qu, Biao</creatorcontrib><creatorcontrib>Wang, Changyu</creatorcontrib><creatorcontrib>Meng, Fanwen</creatorcontrib><title>Convergence analysis of a projection algorithm for variational inequality problems</title><title>Journal of global optimization</title><addtitle>J Glob Optim</addtitle><description>In this paper, we propose a projection based Newton-type algorithm for solving the variational inequality problems. A comprehensive study is conducted to analyze both global and local convergence properties of the algorithm. In particular, the algorithm is shown to be of superlinear convergence when the solution is a regular point. In addition, when the Jacobian matrix of the underlying function is positive definite at the solution or the solution is a non-degenerate point, the algorithm still possesses its superlinear convergence. Compared to the relevant projection algorithms in literature, the proposed algorithm is of remarkable advantages in terms of its generalization and favorable convergence properties under relaxed assumptions.</description><subject>Algorithms</subject><subject>Comparative analysis</subject><subject>Computer Science</subject><subject>Convergence</subject><subject>Jacobi matrix method</subject><subject>Jacobian matrix</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Nonlinear programming</subject><subject>Operations Research/Decision Theory</subject><subject>Optimization</subject><subject>Projection</subject><subject>Real Functions</subject><issn>0925-5001</issn><issn>1573-2916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kN9LwzAQx4MoOKf_gE8Fn6uXtGmSxzH8BQNB9Dmk3aVmtM2WdIP992ZW8E3u4I7j-7k7voTcUrinAOIhUpBK5kBVDiDL1J2RGeWiyJmi1TmZgWI85wD0klzFuAEAJTmbkfelHw4YWhwazMxgumN0MfM2M9k2-A02o_NDZrrWBzd-9Zn1ITuY4MxpbrrMDbjbm86Nx5O-7rCP1-TCmi7izW-dk8-nx4_lS756e35dLlZ5UwIbc1vTmiuw3DJGKbeAtlKlEk3NDHJpag6GS1zXSCtbKyl4gxWoNQNa20qoYk7upr3p8G6PcdQbvw_pqahZwRkTKWVS3U-q1nSo3WD9GEyTYo29a_yA1qX5QlBZMlFUVQLYBDTBxxjQ6m1wvQlHTUGfzNaT2TqZrX_M1pCgYoJiEg8thr9f_qG-AcA4gwA</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Qu, Biao</creator><creator>Wang, Changyu</creator><creator>Meng, Fanwen</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20200201</creationdate><title>Convergence analysis of a projection algorithm for variational inequality problems</title><author>Qu, Biao ; Wang, Changyu ; Meng, Fanwen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-fb1b590f5f22115f0ef69497cb2ae58ab50a58edbe16fb9875ce609d201bf6793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Comparative analysis</topic><topic>Computer Science</topic><topic>Convergence</topic><topic>Jacobi matrix method</topic><topic>Jacobian matrix</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Nonlinear programming</topic><topic>Operations Research/Decision Theory</topic><topic>Optimization</topic><topic>Projection</topic><topic>Real Functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qu, Biao</creatorcontrib><creatorcontrib>Wang, Changyu</creatorcontrib><creatorcontrib>Meng, Fanwen</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of global optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qu, Biao</au><au>Wang, Changyu</au><au>Meng, Fanwen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Convergence analysis of a projection algorithm for variational inequality problems</atitle><jtitle>Journal of global optimization</jtitle><stitle>J Glob Optim</stitle><date>2020-02-01</date><risdate>2020</risdate><volume>76</volume><issue>2</issue><spage>433</spage><epage>452</epage><pages>433-452</pages><issn>0925-5001</issn><eissn>1573-2916</eissn><abstract>In this paper, we propose a projection based Newton-type algorithm for solving the variational inequality problems. A comprehensive study is conducted to analyze both global and local convergence properties of the algorithm. In particular, the algorithm is shown to be of superlinear convergence when the solution is a regular point. In addition, when the Jacobian matrix of the underlying function is positive definite at the solution or the solution is a non-degenerate point, the algorithm still possesses its superlinear convergence. Compared to the relevant projection algorithms in literature, the proposed algorithm is of remarkable advantages in terms of its generalization and favorable convergence properties under relaxed assumptions.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10898-019-00848-0</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0925-5001
ispartof Journal of global optimization, 2020-02, Vol.76 (2), p.433-452
issn 0925-5001
1573-2916
language eng
recordid cdi_proquest_journals_2352272278
source SpringerLink Journals
subjects Algorithms
Comparative analysis
Computer Science
Convergence
Jacobi matrix method
Jacobian matrix
Mathematical analysis
Mathematics
Mathematics and Statistics
Nonlinear programming
Operations Research/Decision Theory
Optimization
Projection
Real Functions
title Convergence analysis of a projection algorithm for variational inequality problems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T10%3A56%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Convergence%20analysis%20of%20a%20projection%20algorithm%20for%20variational%20inequality%20problems&rft.jtitle=Journal%20of%20global%20optimization&rft.au=Qu,%20Biao&rft.date=2020-02-01&rft.volume=76&rft.issue=2&rft.spage=433&rft.epage=452&rft.pages=433-452&rft.issn=0925-5001&rft.eissn=1573-2916&rft_id=info:doi/10.1007/s10898-019-00848-0&rft_dat=%3Cgale_proqu%3EA718427366%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2352272278&rft_id=info:pmid/&rft_galeid=A718427366&rfr_iscdi=true