Deep Clustering With Variational Autoencoder
An autoencoder that learns a latent space in an unsupervised manner has many applications in signal processing. However, the latent space of an autoencoder does not pursue the same clustering goal as Kmeans or GMM. A recent work proposes to artificially re-align each point in the latent space of an...
Gespeichert in:
Veröffentlicht in: | IEEE signal processing letters 2020, Vol.27, p.231-235 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 235 |
---|---|
container_issue | |
container_start_page | 231 |
container_title | IEEE signal processing letters |
container_volume | 27 |
creator | Lim, Kart-Leong Jiang, Xudong Yi, Chenyu |
description | An autoencoder that learns a latent space in an unsupervised manner has many applications in signal processing. However, the latent space of an autoencoder does not pursue the same clustering goal as Kmeans or GMM. A recent work proposes to artificially re-align each point in the latent space of an autoencoder to its nearest class neighbors during training (Song et al. 2013). The resulting new latent space is found to be much more suitable for clustering, since clustering information is used. Inspired by previous works (Song et al. 2013), in this letter we propose several extensions to this technique. First, we propose a probabilistic approach to generalize Song's approach, such that Euclidean distance in the latent space is now represented by KL divergence. Second, as a consequence of this generalization we can now use probability distributions as inputs rather than points in the latent space. Third, we propose using Bayesian Gaussian mixture model for clustering in the latent space. We demonstrated our proposed method on digit recognition datasets, MNIST, USPS and SHVN as well as scene datasets, Scene15 and MIT67 with interesting findings. |
doi_str_mv | 10.1109/LSP.2020.2965328 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2352214884</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8957256</ieee_id><sourcerecordid>2352214884</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-b4e8a53a55d36c8e5789f18ed297fbbc37995df079b411bce1a37eccc57e24903</originalsourceid><addsrcrecordid>eNo9kEtLxDAUhYMoOI7uBTcFt3a8SZrmZjmMTygo-FqGNL3VDrUdk3bhv7fDDK7uWXzncPkYO-ew4BzMdfHyvBAgYCFMrqTAAzbjSmEqZM4PpwwaUmMAj9lJjGsAQI5qxq5uiDbJqh3jQKHpPpOPZvhK3l1o3ND0nWuT5Tj01Pm-onDKjmrXRjrb3zl7u7t9XT2kxdP942pZpF5KHNIyI3RKOqUqmXskpdHUHKkSRtdl6aU2RlU1aFNmnJeeuJOavPdKk8gMyDm73O1uQv8zUhzsuh_D9Ey0QioheIaYTRTsKB_6GAPVdhOabxd-LQe7dWInJ3brxO6dTJWLXaUhon8cjdJC5fIPDyZcGw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2352214884</pqid></control><display><type>article</type><title>Deep Clustering With Variational Autoencoder</title><source>IEEE Electronic Library (IEL)</source><creator>Lim, Kart-Leong ; Jiang, Xudong ; Yi, Chenyu</creator><creatorcontrib>Lim, Kart-Leong ; Jiang, Xudong ; Yi, Chenyu</creatorcontrib><description>An autoencoder that learns a latent space in an unsupervised manner has many applications in signal processing. However, the latent space of an autoencoder does not pursue the same clustering goal as Kmeans or GMM. A recent work proposes to artificially re-align each point in the latent space of an autoencoder to its nearest class neighbors during training (Song et al. 2013). The resulting new latent space is found to be much more suitable for clustering, since clustering information is used. Inspired by previous works (Song et al. 2013), in this letter we propose several extensions to this technique. First, we propose a probabilistic approach to generalize Song's approach, such that Euclidean distance in the latent space is now represented by KL divergence. Second, as a consequence of this generalization we can now use probability distributions as inputs rather than points in the latent space. Third, we propose using Bayesian Gaussian mixture model for clustering in the latent space. We demonstrated our proposed method on digit recognition datasets, MNIST, USPS and SHVN as well as scene datasets, Scene15 and MIT67 with interesting findings.</description><identifier>ISSN: 1070-9908</identifier><identifier>EISSN: 1558-2361</identifier><identifier>DOI: 10.1109/LSP.2020.2965328</identifier><identifier>CODEN: ISPLEM</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Bayes methods ; Clustering ; Datasets ; Energy management ; Euclidean geometry ; Gaussian distribution ; Optimization ; Photovoltaic cells ; Probabilistic logic ; Probabilistic models ; Probability distribution ; Random variables ; Signal processing ; Statistical analysis</subject><ispartof>IEEE signal processing letters, 2020, Vol.27, p.231-235</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-b4e8a53a55d36c8e5789f18ed297fbbc37995df079b411bce1a37eccc57e24903</citedby><cites>FETCH-LOGICAL-c338t-b4e8a53a55d36c8e5789f18ed297fbbc37995df079b411bce1a37eccc57e24903</cites><orcidid>0000-0002-9104-2315 ; 0000-0001-5002-6549 ; 0000-0001-9050-2300</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8957256$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4010,27900,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8957256$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lim, Kart-Leong</creatorcontrib><creatorcontrib>Jiang, Xudong</creatorcontrib><creatorcontrib>Yi, Chenyu</creatorcontrib><title>Deep Clustering With Variational Autoencoder</title><title>IEEE signal processing letters</title><addtitle>LSP</addtitle><description>An autoencoder that learns a latent space in an unsupervised manner has many applications in signal processing. However, the latent space of an autoencoder does not pursue the same clustering goal as Kmeans or GMM. A recent work proposes to artificially re-align each point in the latent space of an autoencoder to its nearest class neighbors during training (Song et al. 2013). The resulting new latent space is found to be much more suitable for clustering, since clustering information is used. Inspired by previous works (Song et al. 2013), in this letter we propose several extensions to this technique. First, we propose a probabilistic approach to generalize Song's approach, such that Euclidean distance in the latent space is now represented by KL divergence. Second, as a consequence of this generalization we can now use probability distributions as inputs rather than points in the latent space. Third, we propose using Bayesian Gaussian mixture model for clustering in the latent space. We demonstrated our proposed method on digit recognition datasets, MNIST, USPS and SHVN as well as scene datasets, Scene15 and MIT67 with interesting findings.</description><subject>Bayes methods</subject><subject>Clustering</subject><subject>Datasets</subject><subject>Energy management</subject><subject>Euclidean geometry</subject><subject>Gaussian distribution</subject><subject>Optimization</subject><subject>Photovoltaic cells</subject><subject>Probabilistic logic</subject><subject>Probabilistic models</subject><subject>Probability distribution</subject><subject>Random variables</subject><subject>Signal processing</subject><subject>Statistical analysis</subject><issn>1070-9908</issn><issn>1558-2361</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEtLxDAUhYMoOI7uBTcFt3a8SZrmZjmMTygo-FqGNL3VDrUdk3bhv7fDDK7uWXzncPkYO-ew4BzMdfHyvBAgYCFMrqTAAzbjSmEqZM4PpwwaUmMAj9lJjGsAQI5qxq5uiDbJqh3jQKHpPpOPZvhK3l1o3ND0nWuT5Tj01Pm-onDKjmrXRjrb3zl7u7t9XT2kxdP942pZpF5KHNIyI3RKOqUqmXskpdHUHKkSRtdl6aU2RlU1aFNmnJeeuJOavPdKk8gMyDm73O1uQv8zUhzsuh_D9Ey0QioheIaYTRTsKB_6GAPVdhOabxd-LQe7dWInJ3brxO6dTJWLXaUhon8cjdJC5fIPDyZcGw</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Lim, Kart-Leong</creator><creator>Jiang, Xudong</creator><creator>Yi, Chenyu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-9104-2315</orcidid><orcidid>https://orcid.org/0000-0001-5002-6549</orcidid><orcidid>https://orcid.org/0000-0001-9050-2300</orcidid></search><sort><creationdate>2020</creationdate><title>Deep Clustering With Variational Autoencoder</title><author>Lim, Kart-Leong ; Jiang, Xudong ; Yi, Chenyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-b4e8a53a55d36c8e5789f18ed297fbbc37995df079b411bce1a37eccc57e24903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Bayes methods</topic><topic>Clustering</topic><topic>Datasets</topic><topic>Energy management</topic><topic>Euclidean geometry</topic><topic>Gaussian distribution</topic><topic>Optimization</topic><topic>Photovoltaic cells</topic><topic>Probabilistic logic</topic><topic>Probabilistic models</topic><topic>Probability distribution</topic><topic>Random variables</topic><topic>Signal processing</topic><topic>Statistical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lim, Kart-Leong</creatorcontrib><creatorcontrib>Jiang, Xudong</creatorcontrib><creatorcontrib>Yi, Chenyu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE signal processing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lim, Kart-Leong</au><au>Jiang, Xudong</au><au>Yi, Chenyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep Clustering With Variational Autoencoder</atitle><jtitle>IEEE signal processing letters</jtitle><stitle>LSP</stitle><date>2020</date><risdate>2020</risdate><volume>27</volume><spage>231</spage><epage>235</epage><pages>231-235</pages><issn>1070-9908</issn><eissn>1558-2361</eissn><coden>ISPLEM</coden><abstract>An autoencoder that learns a latent space in an unsupervised manner has many applications in signal processing. However, the latent space of an autoencoder does not pursue the same clustering goal as Kmeans or GMM. A recent work proposes to artificially re-align each point in the latent space of an autoencoder to its nearest class neighbors during training (Song et al. 2013). The resulting new latent space is found to be much more suitable for clustering, since clustering information is used. Inspired by previous works (Song et al. 2013), in this letter we propose several extensions to this technique. First, we propose a probabilistic approach to generalize Song's approach, such that Euclidean distance in the latent space is now represented by KL divergence. Second, as a consequence of this generalization we can now use probability distributions as inputs rather than points in the latent space. Third, we propose using Bayesian Gaussian mixture model for clustering in the latent space. We demonstrated our proposed method on digit recognition datasets, MNIST, USPS and SHVN as well as scene datasets, Scene15 and MIT67 with interesting findings.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LSP.2020.2965328</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-9104-2315</orcidid><orcidid>https://orcid.org/0000-0001-5002-6549</orcidid><orcidid>https://orcid.org/0000-0001-9050-2300</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1070-9908 |
ispartof | IEEE signal processing letters, 2020, Vol.27, p.231-235 |
issn | 1070-9908 1558-2361 |
language | eng |
recordid | cdi_proquest_journals_2352214884 |
source | IEEE Electronic Library (IEL) |
subjects | Bayes methods Clustering Datasets Energy management Euclidean geometry Gaussian distribution Optimization Photovoltaic cells Probabilistic logic Probabilistic models Probability distribution Random variables Signal processing Statistical analysis |
title | Deep Clustering With Variational Autoencoder |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T09%3A14%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20Clustering%20With%20Variational%20Autoencoder&rft.jtitle=IEEE%20signal%20processing%20letters&rft.au=Lim,%20Kart-Leong&rft.date=2020&rft.volume=27&rft.spage=231&rft.epage=235&rft.pages=231-235&rft.issn=1070-9908&rft.eissn=1558-2361&rft.coden=ISPLEM&rft_id=info:doi/10.1109/LSP.2020.2965328&rft_dat=%3Cproquest_RIE%3E2352214884%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2352214884&rft_id=info:pmid/&rft_ieee_id=8957256&rfr_iscdi=true |