Closed-Loop, Axial Temperature Control of Etched Silicon Microcolumn for Tunable Thermal Gradient Gas Chromatography

Combining the resolution of conventional gas chromatography systems with the size factor of microGC systems is important for improving the affordability and portability of high performance gas analysis. Recent work has demonstrated the feasibility of high resolution separation of gases in a benchtop...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of microelectromechanical systems 2020-02, Vol.29 (1), p.76-85
Hauptverfasser: Schnepf, Parker D., Davis, Aaron, Iverson, Brian D., Vanfleet, Richard, Davis, Robert C., Jensen, Brian D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 85
container_issue 1
container_start_page 76
container_title Journal of microelectromechanical systems
container_volume 29
creator Schnepf, Parker D.
Davis, Aaron
Iverson, Brian D.
Vanfleet, Richard
Davis, Robert C.
Jensen, Brian D.
description Combining the resolution of conventional gas chromatography systems with the size factor of microGC systems is important for improving the affordability and portability of high performance gas analysis. Recent work has demonstrated the feasibility of high resolution separation of gases in a benchtopscale short column system by controlling thermal gradients through the column. This work reports a microfabricated thermally controllable gas chromatographic column with a small footprint (approximately 6.25 cm 2 ). The design of the 20 cm column utilizes 21 individually controllable thin film heaters and conduction cooling to produce a desired temperature profile. The reported device is capable of heating and cooling rates exceeding 8000 °C/min and can reach temperatures of 350 °C. The control methods allow for excellent disturbance rejection and precision to within +/- 1 °C. Each length of the column between heaters was demonstrated to be individually controllable and displayed quadratic temperature profiles. This paper focuses on the fabrication process and implementation of the thermal control strategy.
doi_str_mv 10.1109/JMEMS.2019.2953152
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2352207088</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8926461</ieee_id><sourcerecordid>2352207088</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-facdcfd5e260731e59b7a78dea301482c92999110e6212ca7fb707427b269cb63</originalsourceid><addsrcrecordid>eNo9kM1OwzAQhCMEEqXwAnCxxJUUe_Pj-FhFpYBacWg4W46zIamSODiJRN8el1acdg8zszuf590zumCMiuf37Wq7WwBlYgEiClgEF96MiZD5lEXJpdtpxH3OIn7t3QzDnlIWhkk888a0MQMW_saY_oksf2rVkAzbHq0aJ4skNd1oTUNMSVajrrAgu7qptenIttbWaNNMbUdKY0k2dSpvkGQV2talrK0qauxGslYDSStrWjWaL6v66nDrXZWqGfDuPOfe58sqS1_9zcf6LV1ufA1hPPql0oUuiwghpjxgGImcK54UqAL3fgJagBDC9ccYGGjFy5xTHgLPIRY6j4O593jK7a35nnAY5d5MtnMnJQQRAOU0SZwKTirXZxgslrK3davsQTIqj3TlH115pCvPdJ3p4WSqEfHfkAiIw5gFvyIadtY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2352207088</pqid></control><display><type>article</type><title>Closed-Loop, Axial Temperature Control of Etched Silicon Microcolumn for Tunable Thermal Gradient Gas Chromatography</title><source>IEEE Electronic Library (IEL)</source><creator>Schnepf, Parker D. ; Davis, Aaron ; Iverson, Brian D. ; Vanfleet, Richard ; Davis, Robert C. ; Jensen, Brian D.</creator><creatorcontrib>Schnepf, Parker D. ; Davis, Aaron ; Iverson, Brian D. ; Vanfleet, Richard ; Davis, Robert C. ; Jensen, Brian D.</creatorcontrib><description>Combining the resolution of conventional gas chromatography systems with the size factor of microGC systems is important for improving the affordability and portability of high performance gas analysis. Recent work has demonstrated the feasibility of high resolution separation of gases in a benchtopscale short column system by controlling thermal gradients through the column. This work reports a microfabricated thermally controllable gas chromatographic column with a small footprint (approximately 6.25 cm 2 ). The design of the 20 cm column utilizes 21 individually controllable thin film heaters and conduction cooling to produce a desired temperature profile. The reported device is capable of heating and cooling rates exceeding 8000 °C/min and can reach temperatures of 350 °C. The control methods allow for excellent disturbance rejection and precision to within +/- 1 °C. Each length of the column between heaters was demonstrated to be individually controllable and displayed quadratic temperature profiles. This paper focuses on the fabrication process and implementation of the thermal control strategy.</description><identifier>ISSN: 1057-7157</identifier><identifier>EISSN: 1941-0158</identifier><identifier>DOI: 10.1109/JMEMS.2019.2953152</identifier><identifier>CODEN: JMIYET</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Chromatography ; Conduction cooling ; Conduction heating ; Control methods ; Cooling ; Cooling rate ; Fabrication ; Gas analysis ; Gas chromatography ; Gases ; Heating systems ; MEMS ; microcolumn ; Nickel ; Silicon ; silicon DRIE ; Stability ; Temperature ; Temperature control ; Temperature gradients ; Temperature profiles ; Thermal analysis ; thermal gradient ; Thin films</subject><ispartof>Journal of microelectromechanical systems, 2020-02, Vol.29 (1), p.76-85</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c246t-facdcfd5e260731e59b7a78dea301482c92999110e6212ca7fb707427b269cb63</cites><orcidid>0000-0002-4592-3728 ; 0000-0002-9124-0303 ; 0000-0002-2468-1600 ; 0000-0002-6165-4396 ; 0000-0002-2326-0214</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8926461$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8926461$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Schnepf, Parker D.</creatorcontrib><creatorcontrib>Davis, Aaron</creatorcontrib><creatorcontrib>Iverson, Brian D.</creatorcontrib><creatorcontrib>Vanfleet, Richard</creatorcontrib><creatorcontrib>Davis, Robert C.</creatorcontrib><creatorcontrib>Jensen, Brian D.</creatorcontrib><title>Closed-Loop, Axial Temperature Control of Etched Silicon Microcolumn for Tunable Thermal Gradient Gas Chromatography</title><title>Journal of microelectromechanical systems</title><addtitle>JMEMS</addtitle><description>Combining the resolution of conventional gas chromatography systems with the size factor of microGC systems is important for improving the affordability and portability of high performance gas analysis. Recent work has demonstrated the feasibility of high resolution separation of gases in a benchtopscale short column system by controlling thermal gradients through the column. This work reports a microfabricated thermally controllable gas chromatographic column with a small footprint (approximately 6.25 cm 2 ). The design of the 20 cm column utilizes 21 individually controllable thin film heaters and conduction cooling to produce a desired temperature profile. The reported device is capable of heating and cooling rates exceeding 8000 °C/min and can reach temperatures of 350 °C. The control methods allow for excellent disturbance rejection and precision to within +/- 1 °C. Each length of the column between heaters was demonstrated to be individually controllable and displayed quadratic temperature profiles. This paper focuses on the fabrication process and implementation of the thermal control strategy.</description><subject>Chromatography</subject><subject>Conduction cooling</subject><subject>Conduction heating</subject><subject>Control methods</subject><subject>Cooling</subject><subject>Cooling rate</subject><subject>Fabrication</subject><subject>Gas analysis</subject><subject>Gas chromatography</subject><subject>Gases</subject><subject>Heating systems</subject><subject>MEMS</subject><subject>microcolumn</subject><subject>Nickel</subject><subject>Silicon</subject><subject>silicon DRIE</subject><subject>Stability</subject><subject>Temperature</subject><subject>Temperature control</subject><subject>Temperature gradients</subject><subject>Temperature profiles</subject><subject>Thermal analysis</subject><subject>thermal gradient</subject><subject>Thin films</subject><issn>1057-7157</issn><issn>1941-0158</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM1OwzAQhCMEEqXwAnCxxJUUe_Pj-FhFpYBacWg4W46zIamSODiJRN8el1acdg8zszuf590zumCMiuf37Wq7WwBlYgEiClgEF96MiZD5lEXJpdtpxH3OIn7t3QzDnlIWhkk888a0MQMW_saY_oksf2rVkAzbHq0aJ4skNd1oTUNMSVajrrAgu7qptenIttbWaNNMbUdKY0k2dSpvkGQV2talrK0qauxGslYDSStrWjWaL6v66nDrXZWqGfDuPOfe58sqS1_9zcf6LV1ufA1hPPql0oUuiwghpjxgGImcK54UqAL3fgJagBDC9ccYGGjFy5xTHgLPIRY6j4O593jK7a35nnAY5d5MtnMnJQQRAOU0SZwKTirXZxgslrK3davsQTIqj3TlH115pCvPdJ3p4WSqEfHfkAiIw5gFvyIadtY</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Schnepf, Parker D.</creator><creator>Davis, Aaron</creator><creator>Iverson, Brian D.</creator><creator>Vanfleet, Richard</creator><creator>Davis, Robert C.</creator><creator>Jensen, Brian D.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-4592-3728</orcidid><orcidid>https://orcid.org/0000-0002-9124-0303</orcidid><orcidid>https://orcid.org/0000-0002-2468-1600</orcidid><orcidid>https://orcid.org/0000-0002-6165-4396</orcidid><orcidid>https://orcid.org/0000-0002-2326-0214</orcidid></search><sort><creationdate>20200201</creationdate><title>Closed-Loop, Axial Temperature Control of Etched Silicon Microcolumn for Tunable Thermal Gradient Gas Chromatography</title><author>Schnepf, Parker D. ; Davis, Aaron ; Iverson, Brian D. ; Vanfleet, Richard ; Davis, Robert C. ; Jensen, Brian D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-facdcfd5e260731e59b7a78dea301482c92999110e6212ca7fb707427b269cb63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Chromatography</topic><topic>Conduction cooling</topic><topic>Conduction heating</topic><topic>Control methods</topic><topic>Cooling</topic><topic>Cooling rate</topic><topic>Fabrication</topic><topic>Gas analysis</topic><topic>Gas chromatography</topic><topic>Gases</topic><topic>Heating systems</topic><topic>MEMS</topic><topic>microcolumn</topic><topic>Nickel</topic><topic>Silicon</topic><topic>silicon DRIE</topic><topic>Stability</topic><topic>Temperature</topic><topic>Temperature control</topic><topic>Temperature gradients</topic><topic>Temperature profiles</topic><topic>Thermal analysis</topic><topic>thermal gradient</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schnepf, Parker D.</creatorcontrib><creatorcontrib>Davis, Aaron</creatorcontrib><creatorcontrib>Iverson, Brian D.</creatorcontrib><creatorcontrib>Vanfleet, Richard</creatorcontrib><creatorcontrib>Davis, Robert C.</creatorcontrib><creatorcontrib>Jensen, Brian D.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of microelectromechanical systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Schnepf, Parker D.</au><au>Davis, Aaron</au><au>Iverson, Brian D.</au><au>Vanfleet, Richard</au><au>Davis, Robert C.</au><au>Jensen, Brian D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Closed-Loop, Axial Temperature Control of Etched Silicon Microcolumn for Tunable Thermal Gradient Gas Chromatography</atitle><jtitle>Journal of microelectromechanical systems</jtitle><stitle>JMEMS</stitle><date>2020-02-01</date><risdate>2020</risdate><volume>29</volume><issue>1</issue><spage>76</spage><epage>85</epage><pages>76-85</pages><issn>1057-7157</issn><eissn>1941-0158</eissn><coden>JMIYET</coden><abstract>Combining the resolution of conventional gas chromatography systems with the size factor of microGC systems is important for improving the affordability and portability of high performance gas analysis. Recent work has demonstrated the feasibility of high resolution separation of gases in a benchtopscale short column system by controlling thermal gradients through the column. This work reports a microfabricated thermally controllable gas chromatographic column with a small footprint (approximately 6.25 cm 2 ). The design of the 20 cm column utilizes 21 individually controllable thin film heaters and conduction cooling to produce a desired temperature profile. The reported device is capable of heating and cooling rates exceeding 8000 °C/min and can reach temperatures of 350 °C. The control methods allow for excellent disturbance rejection and precision to within +/- 1 °C. Each length of the column between heaters was demonstrated to be individually controllable and displayed quadratic temperature profiles. This paper focuses on the fabrication process and implementation of the thermal control strategy.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JMEMS.2019.2953152</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-4592-3728</orcidid><orcidid>https://orcid.org/0000-0002-9124-0303</orcidid><orcidid>https://orcid.org/0000-0002-2468-1600</orcidid><orcidid>https://orcid.org/0000-0002-6165-4396</orcidid><orcidid>https://orcid.org/0000-0002-2326-0214</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1057-7157
ispartof Journal of microelectromechanical systems, 2020-02, Vol.29 (1), p.76-85
issn 1057-7157
1941-0158
language eng
recordid cdi_proquest_journals_2352207088
source IEEE Electronic Library (IEL)
subjects Chromatography
Conduction cooling
Conduction heating
Control methods
Cooling
Cooling rate
Fabrication
Gas analysis
Gas chromatography
Gases
Heating systems
MEMS
microcolumn
Nickel
Silicon
silicon DRIE
Stability
Temperature
Temperature control
Temperature gradients
Temperature profiles
Thermal analysis
thermal gradient
Thin films
title Closed-Loop, Axial Temperature Control of Etched Silicon Microcolumn for Tunable Thermal Gradient Gas Chromatography
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T12%3A46%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Closed-Loop,%20Axial%20Temperature%20Control%20of%20Etched%20Silicon%20Microcolumn%20for%20Tunable%20Thermal%20Gradient%20Gas%20Chromatography&rft.jtitle=Journal%20of%20microelectromechanical%20systems&rft.au=Schnepf,%20Parker%20D.&rft.date=2020-02-01&rft.volume=29&rft.issue=1&rft.spage=76&rft.epage=85&rft.pages=76-85&rft.issn=1057-7157&rft.eissn=1941-0158&rft.coden=JMIYET&rft_id=info:doi/10.1109/JMEMS.2019.2953152&rft_dat=%3Cproquest_RIE%3E2352207088%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2352207088&rft_id=info:pmid/&rft_ieee_id=8926461&rfr_iscdi=true