Coding Mask Design for Single Sensor Ultrasound Imaging
We study the design of a coding mask for pulse-echo ultrasound imaging. We are interested in the scenario of a single receiving transducer with an aberrating layer, or `mask,' in front of the transducer's receive surface, with a separate co-located transmit transducer. The mask encodes spa...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on computational imaging 2020, Vol.6, p.358-373 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 373 |
---|---|
container_issue | |
container_start_page | 358 |
container_title | IEEE transactions on computational imaging |
container_volume | 6 |
creator | van der Meulen, Pim Kruizinga, Pieter Bosch, Johannes G. Leus, Geert |
description | We study the design of a coding mask for pulse-echo ultrasound imaging. We are interested in the scenario of a single receiving transducer with an aberrating layer, or `mask,' in front of the transducer's receive surface, with a separate co-located transmit transducer. The mask encodes spatial measurements into a single output signal, containing more information about a reflector's position than a transducer without a mask. The amount of information in such measurements is dependent on the mask geometry, which we propose to optimize using an image reconstruction mean square error (MSE) criterion. We approximate the physics involved to define a linear measurement model, which we use to find an expression for the image error covariance matrix. By discretizing the mask surface and defining a discrete number of mask thickness levels per point on its surface, we show how finding the best mask can be posed as a variation of a sensor selection problem. We propose a convex relaxation in combination with randomized rounding, as well as a greedy optimization algorithm to solve this problem. We show empirically that both algorithms come close to the global optimum. Our simulations further show that the optimized masks have better a MSE than nearly all randomly shaped masks. We observe that an optimized mask amplifies echoes coming from within the region of interest (ROI), and strongly reduces the correlation between echoes of pixels within the ROI. |
doi_str_mv | 10.1109/TCI.2019.2948729 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2352194668</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8878141</ieee_id><sourcerecordid>2352194668</sourcerecordid><originalsourceid>FETCH-LOGICAL-c310t-1429904900828545907e2efd91629efb806abb76b72ac1214a096d9e335fd213</originalsourceid><addsrcrecordid>eNo9kL1PwzAQxS0EEhV0R2KJxJxyd3Yc34jCV6UihpbZchqnSmmTYrcD_z2uWjHd13vvpJ8QdwgTRODHRTWdECBPiJUpiS_EiKSUOSuQl6kvSpmDkvpajGNcAwAqJmn0SJTV0HT9Kvtw8Tt79rFb9Vk7hGyelhufzX0f0_S12QcXh0PfZNOtW6Xbrbhq3Sb68bneiMXry6J6z2efb9PqaZYvJcI-R0XMoBjAkClUwVB68m3DqIl9WxvQrq5LXZfklkioHLBu2EtZtA2hvBEPp9hdGH4OPu7tejiEPn20JAtCVlqbpIKTahmGGINv7S50Wxd-LYI9ArIJkD0CsmdAyXJ_snTe-3-5MaVBhfIPxYdeZA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2352194668</pqid></control><display><type>article</type><title>Coding Mask Design for Single Sensor Ultrasound Imaging</title><source>IEEE Electronic Library (IEL)</source><creator>van der Meulen, Pim ; Kruizinga, Pieter ; Bosch, Johannes G. ; Leus, Geert</creator><creatorcontrib>van der Meulen, Pim ; Kruizinga, Pieter ; Bosch, Johannes G. ; Leus, Geert</creatorcontrib><description>We study the design of a coding mask for pulse-echo ultrasound imaging. We are interested in the scenario of a single receiving transducer with an aberrating layer, or `mask,' in front of the transducer's receive surface, with a separate co-located transmit transducer. The mask encodes spatial measurements into a single output signal, containing more information about a reflector's position than a transducer without a mask. The amount of information in such measurements is dependent on the mask geometry, which we propose to optimize using an image reconstruction mean square error (MSE) criterion. We approximate the physics involved to define a linear measurement model, which we use to find an expression for the image error covariance matrix. By discretizing the mask surface and defining a discrete number of mask thickness levels per point on its surface, we show how finding the best mask can be posed as a variation of a sensor selection problem. We propose a convex relaxation in combination with randomized rounding, as well as a greedy optimization algorithm to solve this problem. We show empirically that both algorithms come close to the global optimum. Our simulations further show that the optimized masks have better a MSE than nearly all randomly shaped masks. We observe that an optimized mask amplifies echoes coming from within the region of interest (ROI), and strongly reduces the correlation between echoes of pixels within the ROI.</description><identifier>ISSN: 2573-0436</identifier><identifier>EISSN: 2333-9403</identifier><identifier>DOI: 10.1109/TCI.2019.2948729</identifier><identifier>CODEN: ITCIAJ</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Coded aperture ; Coding ; compressed sensing ; Computer simulation ; Covariance matrices ; Covariance matrix ; Echoes ; Encoding ; experimental design ; Greedy algorithms ; Image reconstruction ; Imaging ; Masks ; Optimization ; Rounding ; sparse sensing ; Transducers ; Ultrasonic imaging ; Ultrasound ; ultrasound imaging</subject><ispartof>IEEE transactions on computational imaging, 2020, Vol.6, p.358-373</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c310t-1429904900828545907e2efd91629efb806abb76b72ac1214a096d9e335fd213</citedby><cites>FETCH-LOGICAL-c310t-1429904900828545907e2efd91629efb806abb76b72ac1214a096d9e335fd213</cites><orcidid>0000-0001-8288-867X ; 0000-0002-3128-0979 ; 0000-0003-2278-1218</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8878141$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4010,27900,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8878141$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>van der Meulen, Pim</creatorcontrib><creatorcontrib>Kruizinga, Pieter</creatorcontrib><creatorcontrib>Bosch, Johannes G.</creatorcontrib><creatorcontrib>Leus, Geert</creatorcontrib><title>Coding Mask Design for Single Sensor Ultrasound Imaging</title><title>IEEE transactions on computational imaging</title><addtitle>TCI</addtitle><description>We study the design of a coding mask for pulse-echo ultrasound imaging. We are interested in the scenario of a single receiving transducer with an aberrating layer, or `mask,' in front of the transducer's receive surface, with a separate co-located transmit transducer. The mask encodes spatial measurements into a single output signal, containing more information about a reflector's position than a transducer without a mask. The amount of information in such measurements is dependent on the mask geometry, which we propose to optimize using an image reconstruction mean square error (MSE) criterion. We approximate the physics involved to define a linear measurement model, which we use to find an expression for the image error covariance matrix. By discretizing the mask surface and defining a discrete number of mask thickness levels per point on its surface, we show how finding the best mask can be posed as a variation of a sensor selection problem. We propose a convex relaxation in combination with randomized rounding, as well as a greedy optimization algorithm to solve this problem. We show empirically that both algorithms come close to the global optimum. Our simulations further show that the optimized masks have better a MSE than nearly all randomly shaped masks. We observe that an optimized mask amplifies echoes coming from within the region of interest (ROI), and strongly reduces the correlation between echoes of pixels within the ROI.</description><subject>Coded aperture</subject><subject>Coding</subject><subject>compressed sensing</subject><subject>Computer simulation</subject><subject>Covariance matrices</subject><subject>Covariance matrix</subject><subject>Echoes</subject><subject>Encoding</subject><subject>experimental design</subject><subject>Greedy algorithms</subject><subject>Image reconstruction</subject><subject>Imaging</subject><subject>Masks</subject><subject>Optimization</subject><subject>Rounding</subject><subject>sparse sensing</subject><subject>Transducers</subject><subject>Ultrasonic imaging</subject><subject>Ultrasound</subject><subject>ultrasound imaging</subject><issn>2573-0436</issn><issn>2333-9403</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kL1PwzAQxS0EEhV0R2KJxJxyd3Yc34jCV6UihpbZchqnSmmTYrcD_z2uWjHd13vvpJ8QdwgTRODHRTWdECBPiJUpiS_EiKSUOSuQl6kvSpmDkvpajGNcAwAqJmn0SJTV0HT9Kvtw8Tt79rFb9Vk7hGyelhufzX0f0_S12QcXh0PfZNOtW6Xbrbhq3Sb68bneiMXry6J6z2efb9PqaZYvJcI-R0XMoBjAkClUwVB68m3DqIl9WxvQrq5LXZfklkioHLBu2EtZtA2hvBEPp9hdGH4OPu7tejiEPn20JAtCVlqbpIKTahmGGINv7S50Wxd-LYI9ArIJkD0CsmdAyXJ_snTe-3-5MaVBhfIPxYdeZA</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>van der Meulen, Pim</creator><creator>Kruizinga, Pieter</creator><creator>Bosch, Johannes G.</creator><creator>Leus, Geert</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-8288-867X</orcidid><orcidid>https://orcid.org/0000-0002-3128-0979</orcidid><orcidid>https://orcid.org/0000-0003-2278-1218</orcidid></search><sort><creationdate>2020</creationdate><title>Coding Mask Design for Single Sensor Ultrasound Imaging</title><author>van der Meulen, Pim ; Kruizinga, Pieter ; Bosch, Johannes G. ; Leus, Geert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c310t-1429904900828545907e2efd91629efb806abb76b72ac1214a096d9e335fd213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Coded aperture</topic><topic>Coding</topic><topic>compressed sensing</topic><topic>Computer simulation</topic><topic>Covariance matrices</topic><topic>Covariance matrix</topic><topic>Echoes</topic><topic>Encoding</topic><topic>experimental design</topic><topic>Greedy algorithms</topic><topic>Image reconstruction</topic><topic>Imaging</topic><topic>Masks</topic><topic>Optimization</topic><topic>Rounding</topic><topic>sparse sensing</topic><topic>Transducers</topic><topic>Ultrasonic imaging</topic><topic>Ultrasound</topic><topic>ultrasound imaging</topic><toplevel>online_resources</toplevel><creatorcontrib>van der Meulen, Pim</creatorcontrib><creatorcontrib>Kruizinga, Pieter</creatorcontrib><creatorcontrib>Bosch, Johannes G.</creatorcontrib><creatorcontrib>Leus, Geert</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on computational imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>van der Meulen, Pim</au><au>Kruizinga, Pieter</au><au>Bosch, Johannes G.</au><au>Leus, Geert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coding Mask Design for Single Sensor Ultrasound Imaging</atitle><jtitle>IEEE transactions on computational imaging</jtitle><stitle>TCI</stitle><date>2020</date><risdate>2020</risdate><volume>6</volume><spage>358</spage><epage>373</epage><pages>358-373</pages><issn>2573-0436</issn><eissn>2333-9403</eissn><coden>ITCIAJ</coden><abstract>We study the design of a coding mask for pulse-echo ultrasound imaging. We are interested in the scenario of a single receiving transducer with an aberrating layer, or `mask,' in front of the transducer's receive surface, with a separate co-located transmit transducer. The mask encodes spatial measurements into a single output signal, containing more information about a reflector's position than a transducer without a mask. The amount of information in such measurements is dependent on the mask geometry, which we propose to optimize using an image reconstruction mean square error (MSE) criterion. We approximate the physics involved to define a linear measurement model, which we use to find an expression for the image error covariance matrix. By discretizing the mask surface and defining a discrete number of mask thickness levels per point on its surface, we show how finding the best mask can be posed as a variation of a sensor selection problem. We propose a convex relaxation in combination with randomized rounding, as well as a greedy optimization algorithm to solve this problem. We show empirically that both algorithms come close to the global optimum. Our simulations further show that the optimized masks have better a MSE than nearly all randomly shaped masks. We observe that an optimized mask amplifies echoes coming from within the region of interest (ROI), and strongly reduces the correlation between echoes of pixels within the ROI.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TCI.2019.2948729</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-8288-867X</orcidid><orcidid>https://orcid.org/0000-0002-3128-0979</orcidid><orcidid>https://orcid.org/0000-0003-2278-1218</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2573-0436 |
ispartof | IEEE transactions on computational imaging, 2020, Vol.6, p.358-373 |
issn | 2573-0436 2333-9403 |
language | eng |
recordid | cdi_proquest_journals_2352194668 |
source | IEEE Electronic Library (IEL) |
subjects | Coded aperture Coding compressed sensing Computer simulation Covariance matrices Covariance matrix Echoes Encoding experimental design Greedy algorithms Image reconstruction Imaging Masks Optimization Rounding sparse sensing Transducers Ultrasonic imaging Ultrasound ultrasound imaging |
title | Coding Mask Design for Single Sensor Ultrasound Imaging |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T14%3A24%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coding%20Mask%20Design%20for%20Single%20Sensor%20Ultrasound%20Imaging&rft.jtitle=IEEE%20transactions%20on%20computational%20imaging&rft.au=van%20der%20Meulen,%20Pim&rft.date=2020&rft.volume=6&rft.spage=358&rft.epage=373&rft.pages=358-373&rft.issn=2573-0436&rft.eissn=2333-9403&rft.coden=ITCIAJ&rft_id=info:doi/10.1109/TCI.2019.2948729&rft_dat=%3Cproquest_RIE%3E2352194668%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2352194668&rft_id=info:pmid/&rft_ieee_id=8878141&rfr_iscdi=true |