Coding Mask Design for Single Sensor Ultrasound Imaging

We study the design of a coding mask for pulse-echo ultrasound imaging. We are interested in the scenario of a single receiving transducer with an aberrating layer, or `mask,' in front of the transducer's receive surface, with a separate co-located transmit transducer. The mask encodes spa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on computational imaging 2020, Vol.6, p.358-373
Hauptverfasser: van der Meulen, Pim, Kruizinga, Pieter, Bosch, Johannes G., Leus, Geert
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 373
container_issue
container_start_page 358
container_title IEEE transactions on computational imaging
container_volume 6
creator van der Meulen, Pim
Kruizinga, Pieter
Bosch, Johannes G.
Leus, Geert
description We study the design of a coding mask for pulse-echo ultrasound imaging. We are interested in the scenario of a single receiving transducer with an aberrating layer, or `mask,' in front of the transducer's receive surface, with a separate co-located transmit transducer. The mask encodes spatial measurements into a single output signal, containing more information about a reflector's position than a transducer without a mask. The amount of information in such measurements is dependent on the mask geometry, which we propose to optimize using an image reconstruction mean square error (MSE) criterion. We approximate the physics involved to define a linear measurement model, which we use to find an expression for the image error covariance matrix. By discretizing the mask surface and defining a discrete number of mask thickness levels per point on its surface, we show how finding the best mask can be posed as a variation of a sensor selection problem. We propose a convex relaxation in combination with randomized rounding, as well as a greedy optimization algorithm to solve this problem. We show empirically that both algorithms come close to the global optimum. Our simulations further show that the optimized masks have better a MSE than nearly all randomly shaped masks. We observe that an optimized mask amplifies echoes coming from within the region of interest (ROI), and strongly reduces the correlation between echoes of pixels within the ROI.
doi_str_mv 10.1109/TCI.2019.2948729
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2352194668</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8878141</ieee_id><sourcerecordid>2352194668</sourcerecordid><originalsourceid>FETCH-LOGICAL-c310t-1429904900828545907e2efd91629efb806abb76b72ac1214a096d9e335fd213</originalsourceid><addsrcrecordid>eNo9kL1PwzAQxS0EEhV0R2KJxJxyd3Yc34jCV6UihpbZchqnSmmTYrcD_z2uWjHd13vvpJ8QdwgTRODHRTWdECBPiJUpiS_EiKSUOSuQl6kvSpmDkvpajGNcAwAqJmn0SJTV0HT9Kvtw8Tt79rFb9Vk7hGyelhufzX0f0_S12QcXh0PfZNOtW6Xbrbhq3Sb68bneiMXry6J6z2efb9PqaZYvJcI-R0XMoBjAkClUwVB68m3DqIl9WxvQrq5LXZfklkioHLBu2EtZtA2hvBEPp9hdGH4OPu7tejiEPn20JAtCVlqbpIKTahmGGINv7S50Wxd-LYI9ArIJkD0CsmdAyXJ_snTe-3-5MaVBhfIPxYdeZA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2352194668</pqid></control><display><type>article</type><title>Coding Mask Design for Single Sensor Ultrasound Imaging</title><source>IEEE Electronic Library (IEL)</source><creator>van der Meulen, Pim ; Kruizinga, Pieter ; Bosch, Johannes G. ; Leus, Geert</creator><creatorcontrib>van der Meulen, Pim ; Kruizinga, Pieter ; Bosch, Johannes G. ; Leus, Geert</creatorcontrib><description>We study the design of a coding mask for pulse-echo ultrasound imaging. We are interested in the scenario of a single receiving transducer with an aberrating layer, or `mask,' in front of the transducer's receive surface, with a separate co-located transmit transducer. The mask encodes spatial measurements into a single output signal, containing more information about a reflector's position than a transducer without a mask. The amount of information in such measurements is dependent on the mask geometry, which we propose to optimize using an image reconstruction mean square error (MSE) criterion. We approximate the physics involved to define a linear measurement model, which we use to find an expression for the image error covariance matrix. By discretizing the mask surface and defining a discrete number of mask thickness levels per point on its surface, we show how finding the best mask can be posed as a variation of a sensor selection problem. We propose a convex relaxation in combination with randomized rounding, as well as a greedy optimization algorithm to solve this problem. We show empirically that both algorithms come close to the global optimum. Our simulations further show that the optimized masks have better a MSE than nearly all randomly shaped masks. We observe that an optimized mask amplifies echoes coming from within the region of interest (ROI), and strongly reduces the correlation between echoes of pixels within the ROI.</description><identifier>ISSN: 2573-0436</identifier><identifier>EISSN: 2333-9403</identifier><identifier>DOI: 10.1109/TCI.2019.2948729</identifier><identifier>CODEN: ITCIAJ</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Coded aperture ; Coding ; compressed sensing ; Computer simulation ; Covariance matrices ; Covariance matrix ; Echoes ; Encoding ; experimental design ; Greedy algorithms ; Image reconstruction ; Imaging ; Masks ; Optimization ; Rounding ; sparse sensing ; Transducers ; Ultrasonic imaging ; Ultrasound ; ultrasound imaging</subject><ispartof>IEEE transactions on computational imaging, 2020, Vol.6, p.358-373</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c310t-1429904900828545907e2efd91629efb806abb76b72ac1214a096d9e335fd213</citedby><cites>FETCH-LOGICAL-c310t-1429904900828545907e2efd91629efb806abb76b72ac1214a096d9e335fd213</cites><orcidid>0000-0001-8288-867X ; 0000-0002-3128-0979 ; 0000-0003-2278-1218</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8878141$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4010,27900,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8878141$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>van der Meulen, Pim</creatorcontrib><creatorcontrib>Kruizinga, Pieter</creatorcontrib><creatorcontrib>Bosch, Johannes G.</creatorcontrib><creatorcontrib>Leus, Geert</creatorcontrib><title>Coding Mask Design for Single Sensor Ultrasound Imaging</title><title>IEEE transactions on computational imaging</title><addtitle>TCI</addtitle><description>We study the design of a coding mask for pulse-echo ultrasound imaging. We are interested in the scenario of a single receiving transducer with an aberrating layer, or `mask,' in front of the transducer's receive surface, with a separate co-located transmit transducer. The mask encodes spatial measurements into a single output signal, containing more information about a reflector's position than a transducer without a mask. The amount of information in such measurements is dependent on the mask geometry, which we propose to optimize using an image reconstruction mean square error (MSE) criterion. We approximate the physics involved to define a linear measurement model, which we use to find an expression for the image error covariance matrix. By discretizing the mask surface and defining a discrete number of mask thickness levels per point on its surface, we show how finding the best mask can be posed as a variation of a sensor selection problem. We propose a convex relaxation in combination with randomized rounding, as well as a greedy optimization algorithm to solve this problem. We show empirically that both algorithms come close to the global optimum. Our simulations further show that the optimized masks have better a MSE than nearly all randomly shaped masks. We observe that an optimized mask amplifies echoes coming from within the region of interest (ROI), and strongly reduces the correlation between echoes of pixels within the ROI.</description><subject>Coded aperture</subject><subject>Coding</subject><subject>compressed sensing</subject><subject>Computer simulation</subject><subject>Covariance matrices</subject><subject>Covariance matrix</subject><subject>Echoes</subject><subject>Encoding</subject><subject>experimental design</subject><subject>Greedy algorithms</subject><subject>Image reconstruction</subject><subject>Imaging</subject><subject>Masks</subject><subject>Optimization</subject><subject>Rounding</subject><subject>sparse sensing</subject><subject>Transducers</subject><subject>Ultrasonic imaging</subject><subject>Ultrasound</subject><subject>ultrasound imaging</subject><issn>2573-0436</issn><issn>2333-9403</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kL1PwzAQxS0EEhV0R2KJxJxyd3Yc34jCV6UihpbZchqnSmmTYrcD_z2uWjHd13vvpJ8QdwgTRODHRTWdECBPiJUpiS_EiKSUOSuQl6kvSpmDkvpajGNcAwAqJmn0SJTV0HT9Kvtw8Tt79rFb9Vk7hGyelhufzX0f0_S12QcXh0PfZNOtW6Xbrbhq3Sb68bneiMXry6J6z2efb9PqaZYvJcI-R0XMoBjAkClUwVB68m3DqIl9WxvQrq5LXZfklkioHLBu2EtZtA2hvBEPp9hdGH4OPu7tejiEPn20JAtCVlqbpIKTahmGGINv7S50Wxd-LYI9ArIJkD0CsmdAyXJ_snTe-3-5MaVBhfIPxYdeZA</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>van der Meulen, Pim</creator><creator>Kruizinga, Pieter</creator><creator>Bosch, Johannes G.</creator><creator>Leus, Geert</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-8288-867X</orcidid><orcidid>https://orcid.org/0000-0002-3128-0979</orcidid><orcidid>https://orcid.org/0000-0003-2278-1218</orcidid></search><sort><creationdate>2020</creationdate><title>Coding Mask Design for Single Sensor Ultrasound Imaging</title><author>van der Meulen, Pim ; Kruizinga, Pieter ; Bosch, Johannes G. ; Leus, Geert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c310t-1429904900828545907e2efd91629efb806abb76b72ac1214a096d9e335fd213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Coded aperture</topic><topic>Coding</topic><topic>compressed sensing</topic><topic>Computer simulation</topic><topic>Covariance matrices</topic><topic>Covariance matrix</topic><topic>Echoes</topic><topic>Encoding</topic><topic>experimental design</topic><topic>Greedy algorithms</topic><topic>Image reconstruction</topic><topic>Imaging</topic><topic>Masks</topic><topic>Optimization</topic><topic>Rounding</topic><topic>sparse sensing</topic><topic>Transducers</topic><topic>Ultrasonic imaging</topic><topic>Ultrasound</topic><topic>ultrasound imaging</topic><toplevel>online_resources</toplevel><creatorcontrib>van der Meulen, Pim</creatorcontrib><creatorcontrib>Kruizinga, Pieter</creatorcontrib><creatorcontrib>Bosch, Johannes G.</creatorcontrib><creatorcontrib>Leus, Geert</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on computational imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>van der Meulen, Pim</au><au>Kruizinga, Pieter</au><au>Bosch, Johannes G.</au><au>Leus, Geert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coding Mask Design for Single Sensor Ultrasound Imaging</atitle><jtitle>IEEE transactions on computational imaging</jtitle><stitle>TCI</stitle><date>2020</date><risdate>2020</risdate><volume>6</volume><spage>358</spage><epage>373</epage><pages>358-373</pages><issn>2573-0436</issn><eissn>2333-9403</eissn><coden>ITCIAJ</coden><abstract>We study the design of a coding mask for pulse-echo ultrasound imaging. We are interested in the scenario of a single receiving transducer with an aberrating layer, or `mask,' in front of the transducer's receive surface, with a separate co-located transmit transducer. The mask encodes spatial measurements into a single output signal, containing more information about a reflector's position than a transducer without a mask. The amount of information in such measurements is dependent on the mask geometry, which we propose to optimize using an image reconstruction mean square error (MSE) criterion. We approximate the physics involved to define a linear measurement model, which we use to find an expression for the image error covariance matrix. By discretizing the mask surface and defining a discrete number of mask thickness levels per point on its surface, we show how finding the best mask can be posed as a variation of a sensor selection problem. We propose a convex relaxation in combination with randomized rounding, as well as a greedy optimization algorithm to solve this problem. We show empirically that both algorithms come close to the global optimum. Our simulations further show that the optimized masks have better a MSE than nearly all randomly shaped masks. We observe that an optimized mask amplifies echoes coming from within the region of interest (ROI), and strongly reduces the correlation between echoes of pixels within the ROI.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TCI.2019.2948729</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-8288-867X</orcidid><orcidid>https://orcid.org/0000-0002-3128-0979</orcidid><orcidid>https://orcid.org/0000-0003-2278-1218</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2573-0436
ispartof IEEE transactions on computational imaging, 2020, Vol.6, p.358-373
issn 2573-0436
2333-9403
language eng
recordid cdi_proquest_journals_2352194668
source IEEE Electronic Library (IEL)
subjects Coded aperture
Coding
compressed sensing
Computer simulation
Covariance matrices
Covariance matrix
Echoes
Encoding
experimental design
Greedy algorithms
Image reconstruction
Imaging
Masks
Optimization
Rounding
sparse sensing
Transducers
Ultrasonic imaging
Ultrasound
ultrasound imaging
title Coding Mask Design for Single Sensor Ultrasound Imaging
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T14%3A24%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coding%20Mask%20Design%20for%20Single%20Sensor%20Ultrasound%20Imaging&rft.jtitle=IEEE%20transactions%20on%20computational%20imaging&rft.au=van%20der%20Meulen,%20Pim&rft.date=2020&rft.volume=6&rft.spage=358&rft.epage=373&rft.pages=358-373&rft.issn=2573-0436&rft.eissn=2333-9403&rft.coden=ITCIAJ&rft_id=info:doi/10.1109/TCI.2019.2948729&rft_dat=%3Cproquest_RIE%3E2352194668%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2352194668&rft_id=info:pmid/&rft_ieee_id=8878141&rfr_iscdi=true