Quantitative trading system based on machine learning in Chinese financial market

Quantitative Trading based on Machine Learning can increase the stock exchanging competitive and further enhance stability in the Chinese financial market, while the Risk to income ratio in the A share sector haven’t been studied well enough so far in the Quantitative Trading. The paper study the ri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of intelligent & fuzzy systems 2020-01, Vol.38 (2), p.1423-1433
Hauptverfasser: Zheng, Leina, Pan, Tiejun, Liu, Jun, Ming, Guo, Zhang, Mengli, Wang, Jun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1433
container_issue 2
container_start_page 1423
container_title Journal of intelligent & fuzzy systems
container_volume 38
creator Zheng, Leina
Pan, Tiejun
Liu, Jun
Ming, Guo
Zhang, Mengli
Wang, Jun
description Quantitative Trading based on Machine Learning can increase the stock exchanging competitive and further enhance stability in the Chinese financial market, while the Risk to income ratio in the A share sector haven’t been studied well enough so far in the Quantitative Trading. The paper study the risk and opportunity in the Chinese share market over the period 2005–2013 under Hidden Markov Model (HMM) system estimator. And then, the quantitative stock selection strategy based on neural network is studied based on multiple factors of the total market value of the constituent stocks in the SSE 50 Index, the OBV energy wave, the price-earnings ratio, the Bollinger Bands, the KDJ stochastic index, and the RSI indicators. Back testing obtained the conclusion that the Machine Learning strategy is equally valid for Chinese finical market. By analysing the risk of strategic returns, we can also conclude that the Chinese share market is effective in QuantitativeTrading.
doi_str_mv 10.3233/JIFS-179505
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2352110511</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2352110511</sourcerecordid><originalsourceid>FETCH-LOGICAL-c191t-84513dab46cd060c84340c32b9a5d79eb77e912259b2afa376c7ef06a97bf09d3</originalsourceid><addsrcrecordid>eNotkMFKAzEQhoMoWKsnXyDgUVYzyWazOUqxWilIUc9hNpvV1DZbk1To27tLPc0wfMz_8xFyDexOcCHuXxbztwKUlkyekAnUSha1rtTpsLOqLICX1Tm5SGnNGCjJ2YSsVnsM2WfM_tfRHLH14ZOmQ8puSxtMrqV9oFu0Xz44unEYwwj4QGfjJTna-YDBetwMVPx2-ZKcdbhJ7up_TsnH_PF99lwsX58Ws4dlYUFDLupSgmixKSvbsorZuhQls4I3GmWrtGuUcho4l7rh2KFQlVWuYxVq1XRMt2JKbo5_d7H_2buUzbrfxzBEGi4kB2ASYKBuj5SNfUrRdWYX_VD0YICZ0ZkZnZmjM_EHNKlevg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2352110511</pqid></control><display><type>article</type><title>Quantitative trading system based on machine learning in Chinese financial market</title><source>EBSCOhost Business Source Complete</source><creator>Zheng, Leina ; Pan, Tiejun ; Liu, Jun ; Ming, Guo ; Zhang, Mengli ; Wang, Jun</creator><contributor>Elhoseny, Mohamed ; Yuan, X.</contributor><creatorcontrib>Zheng, Leina ; Pan, Tiejun ; Liu, Jun ; Ming, Guo ; Zhang, Mengli ; Wang, Jun ; Elhoseny, Mohamed ; Yuan, X.</creatorcontrib><description>Quantitative Trading based on Machine Learning can increase the stock exchanging competitive and further enhance stability in the Chinese financial market, while the Risk to income ratio in the A share sector haven’t been studied well enough so far in the Quantitative Trading. The paper study the risk and opportunity in the Chinese share market over the period 2005–2013 under Hidden Markov Model (HMM) system estimator. And then, the quantitative stock selection strategy based on neural network is studied based on multiple factors of the total market value of the constituent stocks in the SSE 50 Index, the OBV energy wave, the price-earnings ratio, the Bollinger Bands, the KDJ stochastic index, and the RSI indicators. Back testing obtained the conclusion that the Machine Learning strategy is equally valid for Chinese finical market. By analysing the risk of strategic returns, we can also conclude that the Chinese share market is effective in QuantitativeTrading.</description><identifier>ISSN: 1064-1246</identifier><identifier>EISSN: 1875-8967</identifier><identifier>DOI: 10.3233/JIFS-179505</identifier><language>eng</language><publisher>Amsterdam: IOS Press BV</publisher><subject>Machine learning ; Market value ; Markov chains ; Neural networks ; Risk analysis ; Securities markets ; Stock exchanges</subject><ispartof>Journal of intelligent &amp; fuzzy systems, 2020-01, Vol.38 (2), p.1423-1433</ispartof><rights>Copyright IOS Press BV 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c191t-84513dab46cd060c84340c32b9a5d79eb77e912259b2afa376c7ef06a97bf09d3</citedby><cites>FETCH-LOGICAL-c191t-84513dab46cd060c84340c32b9a5d79eb77e912259b2afa376c7ef06a97bf09d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><contributor>Elhoseny, Mohamed</contributor><contributor>Yuan, X.</contributor><creatorcontrib>Zheng, Leina</creatorcontrib><creatorcontrib>Pan, Tiejun</creatorcontrib><creatorcontrib>Liu, Jun</creatorcontrib><creatorcontrib>Ming, Guo</creatorcontrib><creatorcontrib>Zhang, Mengli</creatorcontrib><creatorcontrib>Wang, Jun</creatorcontrib><title>Quantitative trading system based on machine learning in Chinese financial market</title><title>Journal of intelligent &amp; fuzzy systems</title><description>Quantitative Trading based on Machine Learning can increase the stock exchanging competitive and further enhance stability in the Chinese financial market, while the Risk to income ratio in the A share sector haven’t been studied well enough so far in the Quantitative Trading. The paper study the risk and opportunity in the Chinese share market over the period 2005–2013 under Hidden Markov Model (HMM) system estimator. And then, the quantitative stock selection strategy based on neural network is studied based on multiple factors of the total market value of the constituent stocks in the SSE 50 Index, the OBV energy wave, the price-earnings ratio, the Bollinger Bands, the KDJ stochastic index, and the RSI indicators. Back testing obtained the conclusion that the Machine Learning strategy is equally valid for Chinese finical market. By analysing the risk of strategic returns, we can also conclude that the Chinese share market is effective in QuantitativeTrading.</description><subject>Machine learning</subject><subject>Market value</subject><subject>Markov chains</subject><subject>Neural networks</subject><subject>Risk analysis</subject><subject>Securities markets</subject><subject>Stock exchanges</subject><issn>1064-1246</issn><issn>1875-8967</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNotkMFKAzEQhoMoWKsnXyDgUVYzyWazOUqxWilIUc9hNpvV1DZbk1To27tLPc0wfMz_8xFyDexOcCHuXxbztwKUlkyekAnUSha1rtTpsLOqLICX1Tm5SGnNGCjJ2YSsVnsM2WfM_tfRHLH14ZOmQ8puSxtMrqV9oFu0Xz44unEYwwj4QGfjJTna-YDBetwMVPx2-ZKcdbhJ7up_TsnH_PF99lwsX58Ws4dlYUFDLupSgmixKSvbsorZuhQls4I3GmWrtGuUcho4l7rh2KFQlVWuYxVq1XRMt2JKbo5_d7H_2buUzbrfxzBEGi4kB2ASYKBuj5SNfUrRdWYX_VD0YICZ0ZkZnZmjM_EHNKlevg</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Zheng, Leina</creator><creator>Pan, Tiejun</creator><creator>Liu, Jun</creator><creator>Ming, Guo</creator><creator>Zhang, Mengli</creator><creator>Wang, Jun</creator><general>IOS Press BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20200101</creationdate><title>Quantitative trading system based on machine learning in Chinese financial market</title><author>Zheng, Leina ; Pan, Tiejun ; Liu, Jun ; Ming, Guo ; Zhang, Mengli ; Wang, Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c191t-84513dab46cd060c84340c32b9a5d79eb77e912259b2afa376c7ef06a97bf09d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Machine learning</topic><topic>Market value</topic><topic>Markov chains</topic><topic>Neural networks</topic><topic>Risk analysis</topic><topic>Securities markets</topic><topic>Stock exchanges</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Leina</creatorcontrib><creatorcontrib>Pan, Tiejun</creatorcontrib><creatorcontrib>Liu, Jun</creatorcontrib><creatorcontrib>Ming, Guo</creatorcontrib><creatorcontrib>Zhang, Mengli</creatorcontrib><creatorcontrib>Wang, Jun</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of intelligent &amp; fuzzy systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zheng, Leina</au><au>Pan, Tiejun</au><au>Liu, Jun</au><au>Ming, Guo</au><au>Zhang, Mengli</au><au>Wang, Jun</au><au>Elhoseny, Mohamed</au><au>Yuan, X.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantitative trading system based on machine learning in Chinese financial market</atitle><jtitle>Journal of intelligent &amp; fuzzy systems</jtitle><date>2020-01-01</date><risdate>2020</risdate><volume>38</volume><issue>2</issue><spage>1423</spage><epage>1433</epage><pages>1423-1433</pages><issn>1064-1246</issn><eissn>1875-8967</eissn><abstract>Quantitative Trading based on Machine Learning can increase the stock exchanging competitive and further enhance stability in the Chinese financial market, while the Risk to income ratio in the A share sector haven’t been studied well enough so far in the Quantitative Trading. The paper study the risk and opportunity in the Chinese share market over the period 2005–2013 under Hidden Markov Model (HMM) system estimator. And then, the quantitative stock selection strategy based on neural network is studied based on multiple factors of the total market value of the constituent stocks in the SSE 50 Index, the OBV energy wave, the price-earnings ratio, the Bollinger Bands, the KDJ stochastic index, and the RSI indicators. Back testing obtained the conclusion that the Machine Learning strategy is equally valid for Chinese finical market. By analysing the risk of strategic returns, we can also conclude that the Chinese share market is effective in QuantitativeTrading.</abstract><cop>Amsterdam</cop><pub>IOS Press BV</pub><doi>10.3233/JIFS-179505</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1064-1246
ispartof Journal of intelligent & fuzzy systems, 2020-01, Vol.38 (2), p.1423-1433
issn 1064-1246
1875-8967
language eng
recordid cdi_proquest_journals_2352110511
source EBSCOhost Business Source Complete
subjects Machine learning
Market value
Markov chains
Neural networks
Risk analysis
Securities markets
Stock exchanges
title Quantitative trading system based on machine learning in Chinese financial market
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T15%3A47%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantitative%20trading%20system%20based%20on%20machine%20learning%20in%20Chinese%20financial%20market&rft.jtitle=Journal%20of%20intelligent%20&%20fuzzy%20systems&rft.au=Zheng,%20Leina&rft.date=2020-01-01&rft.volume=38&rft.issue=2&rft.spage=1423&rft.epage=1433&rft.pages=1423-1433&rft.issn=1064-1246&rft.eissn=1875-8967&rft_id=info:doi/10.3233/JIFS-179505&rft_dat=%3Cproquest_cross%3E2352110511%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2352110511&rft_id=info:pmid/&rfr_iscdi=true