Quantitative trading system based on machine learning in Chinese financial market
Quantitative Trading based on Machine Learning can increase the stock exchanging competitive and further enhance stability in the Chinese financial market, while the Risk to income ratio in the A share sector haven’t been studied well enough so far in the Quantitative Trading. The paper study the ri...
Gespeichert in:
Veröffentlicht in: | Journal of intelligent & fuzzy systems 2020-01, Vol.38 (2), p.1423-1433 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1433 |
---|---|
container_issue | 2 |
container_start_page | 1423 |
container_title | Journal of intelligent & fuzzy systems |
container_volume | 38 |
creator | Zheng, Leina Pan, Tiejun Liu, Jun Ming, Guo Zhang, Mengli Wang, Jun |
description | Quantitative Trading based on Machine Learning can increase the stock exchanging competitive and further enhance stability in the Chinese financial market, while the Risk to income ratio in the A share sector haven’t been studied well enough so far in the Quantitative Trading. The paper study the risk and opportunity in the Chinese share market over the period 2005–2013 under Hidden Markov Model (HMM) system estimator. And then, the quantitative stock selection strategy based on neural network is studied based on multiple factors of the total market value of the constituent stocks in the SSE 50 Index, the OBV energy wave, the price-earnings ratio, the Bollinger Bands, the KDJ stochastic index, and the RSI indicators. Back testing obtained the conclusion that the Machine Learning strategy is equally valid for Chinese finical market. By analysing the risk of strategic returns, we can also conclude that the Chinese share market is effective in QuantitativeTrading. |
doi_str_mv | 10.3233/JIFS-179505 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2352110511</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2352110511</sourcerecordid><originalsourceid>FETCH-LOGICAL-c191t-84513dab46cd060c84340c32b9a5d79eb77e912259b2afa376c7ef06a97bf09d3</originalsourceid><addsrcrecordid>eNotkMFKAzEQhoMoWKsnXyDgUVYzyWazOUqxWilIUc9hNpvV1DZbk1To27tLPc0wfMz_8xFyDexOcCHuXxbztwKUlkyekAnUSha1rtTpsLOqLICX1Tm5SGnNGCjJ2YSsVnsM2WfM_tfRHLH14ZOmQ8puSxtMrqV9oFu0Xz44unEYwwj4QGfjJTna-YDBetwMVPx2-ZKcdbhJ7up_TsnH_PF99lwsX58Ws4dlYUFDLupSgmixKSvbsorZuhQls4I3GmWrtGuUcho4l7rh2KFQlVWuYxVq1XRMt2JKbo5_d7H_2buUzbrfxzBEGi4kB2ASYKBuj5SNfUrRdWYX_VD0YICZ0ZkZnZmjM_EHNKlevg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2352110511</pqid></control><display><type>article</type><title>Quantitative trading system based on machine learning in Chinese financial market</title><source>EBSCOhost Business Source Complete</source><creator>Zheng, Leina ; Pan, Tiejun ; Liu, Jun ; Ming, Guo ; Zhang, Mengli ; Wang, Jun</creator><contributor>Elhoseny, Mohamed ; Yuan, X.</contributor><creatorcontrib>Zheng, Leina ; Pan, Tiejun ; Liu, Jun ; Ming, Guo ; Zhang, Mengli ; Wang, Jun ; Elhoseny, Mohamed ; Yuan, X.</creatorcontrib><description>Quantitative Trading based on Machine Learning can increase the stock exchanging competitive and further enhance stability in the Chinese financial market, while the Risk to income ratio in the A share sector haven’t been studied well enough so far in the Quantitative Trading. The paper study the risk and opportunity in the Chinese share market over the period 2005–2013 under Hidden Markov Model (HMM) system estimator. And then, the quantitative stock selection strategy based on neural network is studied based on multiple factors of the total market value of the constituent stocks in the SSE 50 Index, the OBV energy wave, the price-earnings ratio, the Bollinger Bands, the KDJ stochastic index, and the RSI indicators. Back testing obtained the conclusion that the Machine Learning strategy is equally valid for Chinese finical market. By analysing the risk of strategic returns, we can also conclude that the Chinese share market is effective in QuantitativeTrading.</description><identifier>ISSN: 1064-1246</identifier><identifier>EISSN: 1875-8967</identifier><identifier>DOI: 10.3233/JIFS-179505</identifier><language>eng</language><publisher>Amsterdam: IOS Press BV</publisher><subject>Machine learning ; Market value ; Markov chains ; Neural networks ; Risk analysis ; Securities markets ; Stock exchanges</subject><ispartof>Journal of intelligent & fuzzy systems, 2020-01, Vol.38 (2), p.1423-1433</ispartof><rights>Copyright IOS Press BV 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c191t-84513dab46cd060c84340c32b9a5d79eb77e912259b2afa376c7ef06a97bf09d3</citedby><cites>FETCH-LOGICAL-c191t-84513dab46cd060c84340c32b9a5d79eb77e912259b2afa376c7ef06a97bf09d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><contributor>Elhoseny, Mohamed</contributor><contributor>Yuan, X.</contributor><creatorcontrib>Zheng, Leina</creatorcontrib><creatorcontrib>Pan, Tiejun</creatorcontrib><creatorcontrib>Liu, Jun</creatorcontrib><creatorcontrib>Ming, Guo</creatorcontrib><creatorcontrib>Zhang, Mengli</creatorcontrib><creatorcontrib>Wang, Jun</creatorcontrib><title>Quantitative trading system based on machine learning in Chinese financial market</title><title>Journal of intelligent & fuzzy systems</title><description>Quantitative Trading based on Machine Learning can increase the stock exchanging competitive and further enhance stability in the Chinese financial market, while the Risk to income ratio in the A share sector haven’t been studied well enough so far in the Quantitative Trading. The paper study the risk and opportunity in the Chinese share market over the period 2005–2013 under Hidden Markov Model (HMM) system estimator. And then, the quantitative stock selection strategy based on neural network is studied based on multiple factors of the total market value of the constituent stocks in the SSE 50 Index, the OBV energy wave, the price-earnings ratio, the Bollinger Bands, the KDJ stochastic index, and the RSI indicators. Back testing obtained the conclusion that the Machine Learning strategy is equally valid for Chinese finical market. By analysing the risk of strategic returns, we can also conclude that the Chinese share market is effective in QuantitativeTrading.</description><subject>Machine learning</subject><subject>Market value</subject><subject>Markov chains</subject><subject>Neural networks</subject><subject>Risk analysis</subject><subject>Securities markets</subject><subject>Stock exchanges</subject><issn>1064-1246</issn><issn>1875-8967</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNotkMFKAzEQhoMoWKsnXyDgUVYzyWazOUqxWilIUc9hNpvV1DZbk1To27tLPc0wfMz_8xFyDexOcCHuXxbztwKUlkyekAnUSha1rtTpsLOqLICX1Tm5SGnNGCjJ2YSsVnsM2WfM_tfRHLH14ZOmQ8puSxtMrqV9oFu0Xz44unEYwwj4QGfjJTna-YDBetwMVPx2-ZKcdbhJ7up_TsnH_PF99lwsX58Ws4dlYUFDLupSgmixKSvbsorZuhQls4I3GmWrtGuUcho4l7rh2KFQlVWuYxVq1XRMt2JKbo5_d7H_2buUzbrfxzBEGi4kB2ASYKBuj5SNfUrRdWYX_VD0YICZ0ZkZnZmjM_EHNKlevg</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Zheng, Leina</creator><creator>Pan, Tiejun</creator><creator>Liu, Jun</creator><creator>Ming, Guo</creator><creator>Zhang, Mengli</creator><creator>Wang, Jun</creator><general>IOS Press BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20200101</creationdate><title>Quantitative trading system based on machine learning in Chinese financial market</title><author>Zheng, Leina ; Pan, Tiejun ; Liu, Jun ; Ming, Guo ; Zhang, Mengli ; Wang, Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c191t-84513dab46cd060c84340c32b9a5d79eb77e912259b2afa376c7ef06a97bf09d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Machine learning</topic><topic>Market value</topic><topic>Markov chains</topic><topic>Neural networks</topic><topic>Risk analysis</topic><topic>Securities markets</topic><topic>Stock exchanges</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Leina</creatorcontrib><creatorcontrib>Pan, Tiejun</creatorcontrib><creatorcontrib>Liu, Jun</creatorcontrib><creatorcontrib>Ming, Guo</creatorcontrib><creatorcontrib>Zhang, Mengli</creatorcontrib><creatorcontrib>Wang, Jun</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of intelligent & fuzzy systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zheng, Leina</au><au>Pan, Tiejun</au><au>Liu, Jun</au><au>Ming, Guo</au><au>Zhang, Mengli</au><au>Wang, Jun</au><au>Elhoseny, Mohamed</au><au>Yuan, X.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantitative trading system based on machine learning in Chinese financial market</atitle><jtitle>Journal of intelligent & fuzzy systems</jtitle><date>2020-01-01</date><risdate>2020</risdate><volume>38</volume><issue>2</issue><spage>1423</spage><epage>1433</epage><pages>1423-1433</pages><issn>1064-1246</issn><eissn>1875-8967</eissn><abstract>Quantitative Trading based on Machine Learning can increase the stock exchanging competitive and further enhance stability in the Chinese financial market, while the Risk to income ratio in the A share sector haven’t been studied well enough so far in the Quantitative Trading. The paper study the risk and opportunity in the Chinese share market over the period 2005–2013 under Hidden Markov Model (HMM) system estimator. And then, the quantitative stock selection strategy based on neural network is studied based on multiple factors of the total market value of the constituent stocks in the SSE 50 Index, the OBV energy wave, the price-earnings ratio, the Bollinger Bands, the KDJ stochastic index, and the RSI indicators. Back testing obtained the conclusion that the Machine Learning strategy is equally valid for Chinese finical market. By analysing the risk of strategic returns, we can also conclude that the Chinese share market is effective in QuantitativeTrading.</abstract><cop>Amsterdam</cop><pub>IOS Press BV</pub><doi>10.3233/JIFS-179505</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1064-1246 |
ispartof | Journal of intelligent & fuzzy systems, 2020-01, Vol.38 (2), p.1423-1433 |
issn | 1064-1246 1875-8967 |
language | eng |
recordid | cdi_proquest_journals_2352110511 |
source | EBSCOhost Business Source Complete |
subjects | Machine learning Market value Markov chains Neural networks Risk analysis Securities markets Stock exchanges |
title | Quantitative trading system based on machine learning in Chinese financial market |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T15%3A47%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantitative%20trading%20system%20based%20on%20machine%20learning%20in%20Chinese%20financial%20market&rft.jtitle=Journal%20of%20intelligent%20&%20fuzzy%20systems&rft.au=Zheng,%20Leina&rft.date=2020-01-01&rft.volume=38&rft.issue=2&rft.spage=1423&rft.epage=1433&rft.pages=1423-1433&rft.issn=1064-1246&rft.eissn=1875-8967&rft_id=info:doi/10.3233/JIFS-179505&rft_dat=%3Cproquest_cross%3E2352110511%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2352110511&rft_id=info:pmid/&rfr_iscdi=true |