Entropy-based multi-view matrix completion for clustering with side information
Multi-view clustering aims to group multi-view samples into different clusters based on the similarity. Since side information can describe the relation between samples, for example, must-links and cannot-links, thus multi-view clustering with the consideration about side information along with samp...
Gespeichert in:
Veröffentlicht in: | Pattern analysis and applications : PAA 2020-02, Vol.23 (1), p.359-370 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 370 |
---|---|
container_issue | 1 |
container_start_page | 359 |
container_title | Pattern analysis and applications : PAA |
container_volume | 23 |
creator | Zhu, Changming Miao, Duoqian |
description | Multi-view clustering aims to group multi-view samples into different clusters based on the similarity. Since side information can describe the relation between samples, for example, must-links and cannot-links, thus multi-view clustering with the consideration about side information along with samples can get more feasible clustering results. As a recent developed multi-view clustering approach, multi-view matrix completion (MVMC) constructs similarity matrix for each view and casts clustering into a matrix completion problem. Different from traditional multi-view clustering approaches, MVMC enforces the consistency of clustering results on different views as constraints for alternative optimization and the global optimal solution can be obtained. Although related experiments show that MVMC exhibits impressive performance, it still neglects the possibility of a sample belonging to a cluster. In this paper, we consider the possibility on the base of entropy and develop an entropy-based multi-view matrix completion for clustering with side information (EMVMC). Experiments on multi-view datasets Course, Citeseer, Cora, WebKB, NewsGroup, and Reuters validate the effectiveness of EMVMC. |
doi_str_mv | 10.1007/s10044-019-00797-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2352082489</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2352082489</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-35e2e09964f8c1e0592b060f86a1b3367ebb8600b6d43e40fdb2d89f78f216eb3</originalsourceid><addsrcrecordid>eNp9kEtLAzEQx4MoWKtfwFPAc3SS7CM5SqkPKPSi4C1sdhNN2ZdJau23N3VFb17mwfz_M8wPoUsK1xSgvAkpZhkBKklqZUngCM1oxjkp8_zl-LfO6Ck6C2EDwDlnYobWyz76YdwTXQXT4G7bRkc-nNnhrorefeJ66MbWRDf02A4e1-02RONd_4p3Lr7h4BqDXZ9GSZ9E5-jEVm0wFz95jp7vlk-LB7Ja3z8ublek5lRGwnPDDEhZZFbU1EAumYYCrCgqqjkvSqO1KAB00WTcZGAbzRohbSkso4XRfI6upr2jH963JkS1Gba-TycV4zkDwTIhk4pNqtoPIXhj1ehdV_m9oqAO4NQETiVw6hucgmTikymMhz-N_1v9j-sLjdJxag</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2352082489</pqid></control><display><type>article</type><title>Entropy-based multi-view matrix completion for clustering with side information</title><source>SpringerLink Journals - AutoHoldings</source><creator>Zhu, Changming ; Miao, Duoqian</creator><creatorcontrib>Zhu, Changming ; Miao, Duoqian</creatorcontrib><description>Multi-view clustering aims to group multi-view samples into different clusters based on the similarity. Since side information can describe the relation between samples, for example, must-links and cannot-links, thus multi-view clustering with the consideration about side information along with samples can get more feasible clustering results. As a recent developed multi-view clustering approach, multi-view matrix completion (MVMC) constructs similarity matrix for each view and casts clustering into a matrix completion problem. Different from traditional multi-view clustering approaches, MVMC enforces the consistency of clustering results on different views as constraints for alternative optimization and the global optimal solution can be obtained. Although related experiments show that MVMC exhibits impressive performance, it still neglects the possibility of a sample belonging to a cluster. In this paper, we consider the possibility on the base of entropy and develop an entropy-based multi-view matrix completion for clustering with side information (EMVMC). Experiments on multi-view datasets Course, Citeseer, Cora, WebKB, NewsGroup, and Reuters validate the effectiveness of EMVMC.</description><identifier>ISSN: 1433-7541</identifier><identifier>EISSN: 1433-755X</identifier><identifier>DOI: 10.1007/s10044-019-00797-0</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Clustering ; Computer Science ; Entropy ; Optimization ; Pattern Recognition ; Similarity ; Theoretical Advances</subject><ispartof>Pattern analysis and applications : PAA, 2020-02, Vol.23 (1), p.359-370</ispartof><rights>Springer-Verlag London Ltd., part of Springer Nature 2019</rights><rights>2019© Springer-Verlag London Ltd., part of Springer Nature 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-35e2e09964f8c1e0592b060f86a1b3367ebb8600b6d43e40fdb2d89f78f216eb3</citedby><cites>FETCH-LOGICAL-c319t-35e2e09964f8c1e0592b060f86a1b3367ebb8600b6d43e40fdb2d89f78f216eb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10044-019-00797-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10044-019-00797-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Zhu, Changming</creatorcontrib><creatorcontrib>Miao, Duoqian</creatorcontrib><title>Entropy-based multi-view matrix completion for clustering with side information</title><title>Pattern analysis and applications : PAA</title><addtitle>Pattern Anal Applic</addtitle><description>Multi-view clustering aims to group multi-view samples into different clusters based on the similarity. Since side information can describe the relation between samples, for example, must-links and cannot-links, thus multi-view clustering with the consideration about side information along with samples can get more feasible clustering results. As a recent developed multi-view clustering approach, multi-view matrix completion (MVMC) constructs similarity matrix for each view and casts clustering into a matrix completion problem. Different from traditional multi-view clustering approaches, MVMC enforces the consistency of clustering results on different views as constraints for alternative optimization and the global optimal solution can be obtained. Although related experiments show that MVMC exhibits impressive performance, it still neglects the possibility of a sample belonging to a cluster. In this paper, we consider the possibility on the base of entropy and develop an entropy-based multi-view matrix completion for clustering with side information (EMVMC). Experiments on multi-view datasets Course, Citeseer, Cora, WebKB, NewsGroup, and Reuters validate the effectiveness of EMVMC.</description><subject>Clustering</subject><subject>Computer Science</subject><subject>Entropy</subject><subject>Optimization</subject><subject>Pattern Recognition</subject><subject>Similarity</subject><subject>Theoretical Advances</subject><issn>1433-7541</issn><issn>1433-755X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEQx4MoWKtfwFPAc3SS7CM5SqkPKPSi4C1sdhNN2ZdJau23N3VFb17mwfz_M8wPoUsK1xSgvAkpZhkBKklqZUngCM1oxjkp8_zl-LfO6Ck6C2EDwDlnYobWyz76YdwTXQXT4G7bRkc-nNnhrorefeJ66MbWRDf02A4e1-02RONd_4p3Lr7h4BqDXZ9GSZ9E5-jEVm0wFz95jp7vlk-LB7Ja3z8ublek5lRGwnPDDEhZZFbU1EAumYYCrCgqqjkvSqO1KAB00WTcZGAbzRohbSkso4XRfI6upr2jH963JkS1Gba-TycV4zkDwTIhk4pNqtoPIXhj1ehdV_m9oqAO4NQETiVw6hucgmTikymMhz-N_1v9j-sLjdJxag</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Zhu, Changming</creator><creator>Miao, Duoqian</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200201</creationdate><title>Entropy-based multi-view matrix completion for clustering with side information</title><author>Zhu, Changming ; Miao, Duoqian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-35e2e09964f8c1e0592b060f86a1b3367ebb8600b6d43e40fdb2d89f78f216eb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Clustering</topic><topic>Computer Science</topic><topic>Entropy</topic><topic>Optimization</topic><topic>Pattern Recognition</topic><topic>Similarity</topic><topic>Theoretical Advances</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Changming</creatorcontrib><creatorcontrib>Miao, Duoqian</creatorcontrib><collection>CrossRef</collection><jtitle>Pattern analysis and applications : PAA</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Changming</au><au>Miao, Duoqian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Entropy-based multi-view matrix completion for clustering with side information</atitle><jtitle>Pattern analysis and applications : PAA</jtitle><stitle>Pattern Anal Applic</stitle><date>2020-02-01</date><risdate>2020</risdate><volume>23</volume><issue>1</issue><spage>359</spage><epage>370</epage><pages>359-370</pages><issn>1433-7541</issn><eissn>1433-755X</eissn><abstract>Multi-view clustering aims to group multi-view samples into different clusters based on the similarity. Since side information can describe the relation between samples, for example, must-links and cannot-links, thus multi-view clustering with the consideration about side information along with samples can get more feasible clustering results. As a recent developed multi-view clustering approach, multi-view matrix completion (MVMC) constructs similarity matrix for each view and casts clustering into a matrix completion problem. Different from traditional multi-view clustering approaches, MVMC enforces the consistency of clustering results on different views as constraints for alternative optimization and the global optimal solution can be obtained. Although related experiments show that MVMC exhibits impressive performance, it still neglects the possibility of a sample belonging to a cluster. In this paper, we consider the possibility on the base of entropy and develop an entropy-based multi-view matrix completion for clustering with side information (EMVMC). Experiments on multi-view datasets Course, Citeseer, Cora, WebKB, NewsGroup, and Reuters validate the effectiveness of EMVMC.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s10044-019-00797-0</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1433-7541 |
ispartof | Pattern analysis and applications : PAA, 2020-02, Vol.23 (1), p.359-370 |
issn | 1433-7541 1433-755X |
language | eng |
recordid | cdi_proquest_journals_2352082489 |
source | SpringerLink Journals - AutoHoldings |
subjects | Clustering Computer Science Entropy Optimization Pattern Recognition Similarity Theoretical Advances |
title | Entropy-based multi-view matrix completion for clustering with side information |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T14%3A21%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Entropy-based%20multi-view%20matrix%20completion%20for%20clustering%20with%20side%20information&rft.jtitle=Pattern%20analysis%20and%20applications%20:%20PAA&rft.au=Zhu,%20Changming&rft.date=2020-02-01&rft.volume=23&rft.issue=1&rft.spage=359&rft.epage=370&rft.pages=359-370&rft.issn=1433-7541&rft.eissn=1433-755X&rft_id=info:doi/10.1007/s10044-019-00797-0&rft_dat=%3Cproquest_cross%3E2352082489%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2352082489&rft_id=info:pmid/&rfr_iscdi=true |