Entropy-based multi-view matrix completion for clustering with side information

Multi-view clustering aims to group multi-view samples into different clusters based on the similarity. Since side information can describe the relation between samples, for example, must-links and cannot-links, thus multi-view clustering with the consideration about side information along with samp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pattern analysis and applications : PAA 2020-02, Vol.23 (1), p.359-370
Hauptverfasser: Zhu, Changming, Miao, Duoqian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 370
container_issue 1
container_start_page 359
container_title Pattern analysis and applications : PAA
container_volume 23
creator Zhu, Changming
Miao, Duoqian
description Multi-view clustering aims to group multi-view samples into different clusters based on the similarity. Since side information can describe the relation between samples, for example, must-links and cannot-links, thus multi-view clustering with the consideration about side information along with samples can get more feasible clustering results. As a recent developed multi-view clustering approach, multi-view matrix completion (MVMC) constructs similarity matrix for each view and casts clustering into a matrix completion problem. Different from traditional multi-view clustering approaches, MVMC enforces the consistency of clustering results on different views as constraints for alternative optimization and the global optimal solution can be obtained. Although related experiments show that MVMC exhibits impressive performance, it still neglects the possibility of a sample belonging to a cluster. In this paper, we consider the possibility on the base of entropy and develop an entropy-based multi-view matrix completion for clustering with side information (EMVMC). Experiments on multi-view datasets Course, Citeseer, Cora, WebKB, NewsGroup, and Reuters validate the effectiveness of EMVMC.
doi_str_mv 10.1007/s10044-019-00797-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2352082489</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2352082489</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-35e2e09964f8c1e0592b060f86a1b3367ebb8600b6d43e40fdb2d89f78f216eb3</originalsourceid><addsrcrecordid>eNp9kEtLAzEQx4MoWKtfwFPAc3SS7CM5SqkPKPSi4C1sdhNN2ZdJau23N3VFb17mwfz_M8wPoUsK1xSgvAkpZhkBKklqZUngCM1oxjkp8_zl-LfO6Ck6C2EDwDlnYobWyz76YdwTXQXT4G7bRkc-nNnhrorefeJ66MbWRDf02A4e1-02RONd_4p3Lr7h4BqDXZ9GSZ9E5-jEVm0wFz95jp7vlk-LB7Ja3z8ublek5lRGwnPDDEhZZFbU1EAumYYCrCgqqjkvSqO1KAB00WTcZGAbzRohbSkso4XRfI6upr2jH963JkS1Gba-TycV4zkDwTIhk4pNqtoPIXhj1ehdV_m9oqAO4NQETiVw6hucgmTikymMhz-N_1v9j-sLjdJxag</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2352082489</pqid></control><display><type>article</type><title>Entropy-based multi-view matrix completion for clustering with side information</title><source>SpringerLink Journals - AutoHoldings</source><creator>Zhu, Changming ; Miao, Duoqian</creator><creatorcontrib>Zhu, Changming ; Miao, Duoqian</creatorcontrib><description>Multi-view clustering aims to group multi-view samples into different clusters based on the similarity. Since side information can describe the relation between samples, for example, must-links and cannot-links, thus multi-view clustering with the consideration about side information along with samples can get more feasible clustering results. As a recent developed multi-view clustering approach, multi-view matrix completion (MVMC) constructs similarity matrix for each view and casts clustering into a matrix completion problem. Different from traditional multi-view clustering approaches, MVMC enforces the consistency of clustering results on different views as constraints for alternative optimization and the global optimal solution can be obtained. Although related experiments show that MVMC exhibits impressive performance, it still neglects the possibility of a sample belonging to a cluster. In this paper, we consider the possibility on the base of entropy and develop an entropy-based multi-view matrix completion for clustering with side information (EMVMC). Experiments on multi-view datasets Course, Citeseer, Cora, WebKB, NewsGroup, and Reuters validate the effectiveness of EMVMC.</description><identifier>ISSN: 1433-7541</identifier><identifier>EISSN: 1433-755X</identifier><identifier>DOI: 10.1007/s10044-019-00797-0</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Clustering ; Computer Science ; Entropy ; Optimization ; Pattern Recognition ; Similarity ; Theoretical Advances</subject><ispartof>Pattern analysis and applications : PAA, 2020-02, Vol.23 (1), p.359-370</ispartof><rights>Springer-Verlag London Ltd., part of Springer Nature 2019</rights><rights>2019© Springer-Verlag London Ltd., part of Springer Nature 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-35e2e09964f8c1e0592b060f86a1b3367ebb8600b6d43e40fdb2d89f78f216eb3</citedby><cites>FETCH-LOGICAL-c319t-35e2e09964f8c1e0592b060f86a1b3367ebb8600b6d43e40fdb2d89f78f216eb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10044-019-00797-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10044-019-00797-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Zhu, Changming</creatorcontrib><creatorcontrib>Miao, Duoqian</creatorcontrib><title>Entropy-based multi-view matrix completion for clustering with side information</title><title>Pattern analysis and applications : PAA</title><addtitle>Pattern Anal Applic</addtitle><description>Multi-view clustering aims to group multi-view samples into different clusters based on the similarity. Since side information can describe the relation between samples, for example, must-links and cannot-links, thus multi-view clustering with the consideration about side information along with samples can get more feasible clustering results. As a recent developed multi-view clustering approach, multi-view matrix completion (MVMC) constructs similarity matrix for each view and casts clustering into a matrix completion problem. Different from traditional multi-view clustering approaches, MVMC enforces the consistency of clustering results on different views as constraints for alternative optimization and the global optimal solution can be obtained. Although related experiments show that MVMC exhibits impressive performance, it still neglects the possibility of a sample belonging to a cluster. In this paper, we consider the possibility on the base of entropy and develop an entropy-based multi-view matrix completion for clustering with side information (EMVMC). Experiments on multi-view datasets Course, Citeseer, Cora, WebKB, NewsGroup, and Reuters validate the effectiveness of EMVMC.</description><subject>Clustering</subject><subject>Computer Science</subject><subject>Entropy</subject><subject>Optimization</subject><subject>Pattern Recognition</subject><subject>Similarity</subject><subject>Theoretical Advances</subject><issn>1433-7541</issn><issn>1433-755X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEQx4MoWKtfwFPAc3SS7CM5SqkPKPSi4C1sdhNN2ZdJau23N3VFb17mwfz_M8wPoUsK1xSgvAkpZhkBKklqZUngCM1oxjkp8_zl-LfO6Ck6C2EDwDlnYobWyz76YdwTXQXT4G7bRkc-nNnhrorefeJ66MbWRDf02A4e1-02RONd_4p3Lr7h4BqDXZ9GSZ9E5-jEVm0wFz95jp7vlk-LB7Ja3z8ublek5lRGwnPDDEhZZFbU1EAumYYCrCgqqjkvSqO1KAB00WTcZGAbzRohbSkso4XRfI6upr2jH963JkS1Gba-TycV4zkDwTIhk4pNqtoPIXhj1ehdV_m9oqAO4NQETiVw6hucgmTikymMhz-N_1v9j-sLjdJxag</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Zhu, Changming</creator><creator>Miao, Duoqian</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200201</creationdate><title>Entropy-based multi-view matrix completion for clustering with side information</title><author>Zhu, Changming ; Miao, Duoqian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-35e2e09964f8c1e0592b060f86a1b3367ebb8600b6d43e40fdb2d89f78f216eb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Clustering</topic><topic>Computer Science</topic><topic>Entropy</topic><topic>Optimization</topic><topic>Pattern Recognition</topic><topic>Similarity</topic><topic>Theoretical Advances</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Changming</creatorcontrib><creatorcontrib>Miao, Duoqian</creatorcontrib><collection>CrossRef</collection><jtitle>Pattern analysis and applications : PAA</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Changming</au><au>Miao, Duoqian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Entropy-based multi-view matrix completion for clustering with side information</atitle><jtitle>Pattern analysis and applications : PAA</jtitle><stitle>Pattern Anal Applic</stitle><date>2020-02-01</date><risdate>2020</risdate><volume>23</volume><issue>1</issue><spage>359</spage><epage>370</epage><pages>359-370</pages><issn>1433-7541</issn><eissn>1433-755X</eissn><abstract>Multi-view clustering aims to group multi-view samples into different clusters based on the similarity. Since side information can describe the relation between samples, for example, must-links and cannot-links, thus multi-view clustering with the consideration about side information along with samples can get more feasible clustering results. As a recent developed multi-view clustering approach, multi-view matrix completion (MVMC) constructs similarity matrix for each view and casts clustering into a matrix completion problem. Different from traditional multi-view clustering approaches, MVMC enforces the consistency of clustering results on different views as constraints for alternative optimization and the global optimal solution can be obtained. Although related experiments show that MVMC exhibits impressive performance, it still neglects the possibility of a sample belonging to a cluster. In this paper, we consider the possibility on the base of entropy and develop an entropy-based multi-view matrix completion for clustering with side information (EMVMC). Experiments on multi-view datasets Course, Citeseer, Cora, WebKB, NewsGroup, and Reuters validate the effectiveness of EMVMC.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s10044-019-00797-0</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1433-7541
ispartof Pattern analysis and applications : PAA, 2020-02, Vol.23 (1), p.359-370
issn 1433-7541
1433-755X
language eng
recordid cdi_proquest_journals_2352082489
source SpringerLink Journals - AutoHoldings
subjects Clustering
Computer Science
Entropy
Optimization
Pattern Recognition
Similarity
Theoretical Advances
title Entropy-based multi-view matrix completion for clustering with side information
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T14%3A21%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Entropy-based%20multi-view%20matrix%20completion%20for%20clustering%20with%20side%20information&rft.jtitle=Pattern%20analysis%20and%20applications%20:%20PAA&rft.au=Zhu,%20Changming&rft.date=2020-02-01&rft.volume=23&rft.issue=1&rft.spage=359&rft.epage=370&rft.pages=359-370&rft.issn=1433-7541&rft.eissn=1433-755X&rft_id=info:doi/10.1007/s10044-019-00797-0&rft_dat=%3Cproquest_cross%3E2352082489%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2352082489&rft_id=info:pmid/&rfr_iscdi=true