An introduction to bone tissue engineering
Bone tissue has the capability to regenerate itself; however, defects of a critical size prevent the bone from regenerating and require additional support. To aid regeneration, bone scaffolds created out of autologous or allograft bone can be used, yet these produce problems such as fast degradation...
Gespeichert in:
Veröffentlicht in: | International journal of artificial organs 2020-02, Vol.43 (2), p.69-86 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 86 |
---|---|
container_issue | 2 |
container_start_page | 69 |
container_title | International journal of artificial organs |
container_volume | 43 |
creator | Perić Kačarević, Željka Rider, Patrick Alkildani, Said Retnasingh, Sujith Pejakić, Marija Schnettler, Reinhard Gosau, Martin Smeets, Ralf Jung, Ole Barbeck, Mike |
description | Bone tissue has the capability to regenerate itself; however, defects of a critical size prevent the bone from regenerating and require additional support. To aid regeneration, bone scaffolds created out of autologous or allograft bone can be used, yet these produce problems such as fast degradation rates, reduced bioactivity, donor site morbidity or the risk of pathogen transmission. The development of bone tissue engineering has been used to create functional alternatives to regenerate bone. This can be achieved by producing bone tissue scaffolds that induce osteoconduction and integration, provide mechanical stability, and either integrate into the bone structure or degrade and are excreted by the body. A range of different biomaterials have been used to this end, each with their own advantages and disadvantages. This review will introduce the requirements of bone tissue engineering, beginning with the regeneration process of bone before exploring the requirements of bone tissue scaffolds. Aspects covered include the manufacturing process as well as the different materials used and the incorporation of bioactive molecules, growth factors and cells. |
doi_str_mv | 10.1177/0391398819876286 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2352080845</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_0391398819876286</sage_id><sourcerecordid>2352080845</sourcerecordid><originalsourceid>FETCH-LOGICAL-c365t-ed249d6b4cd885bafd3e947c45a7c32296782fef46a80cb5bfa697f7a8fc0c53</originalsourceid><addsrcrecordid>eNp1kEtLw0AUhQdRbKzuXUnAnRCd92NZii8ouOk-TCZ3SoqdqTPJwn9vQquC4OpeON85Bw5C1wTfE6LUA2aGMKM1MVpJquUJKoiivJKY41NUTHI16TN0kfMWYyI5F-doxogYHyULdLcIZRf6FNvB9V0MZR_LJgYo-y7nAUoImy4ApC5sLtGZt-8Zro53jtZPj-vlS7V6e35dLlaVY1L0FbSUm1Y23LVai8b6loHhynFhlWOUGqk09eC5tBq7RjTeSqO8sto77ASbo9tD7D7FjwFyX2_jkMLYWFMmKNZY84nCB8qlmHMCX-9Tt7Ppsya4nrap_24zWm6OwUOzg_bH8D3GCFQHINsN_Lb-G_gFVUlq4w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2352080845</pqid></control><display><type>article</type><title>An introduction to bone tissue engineering</title><source>Access via SAGE</source><creator>Perić Kačarević, Željka ; Rider, Patrick ; Alkildani, Said ; Retnasingh, Sujith ; Pejakić, Marija ; Schnettler, Reinhard ; Gosau, Martin ; Smeets, Ralf ; Jung, Ole ; Barbeck, Mike</creator><creatorcontrib>Perić Kačarević, Željka ; Rider, Patrick ; Alkildani, Said ; Retnasingh, Sujith ; Pejakić, Marija ; Schnettler, Reinhard ; Gosau, Martin ; Smeets, Ralf ; Jung, Ole ; Barbeck, Mike</creatorcontrib><description>Bone tissue has the capability to regenerate itself; however, defects of a critical size prevent the bone from regenerating and require additional support. To aid regeneration, bone scaffolds created out of autologous or allograft bone can be used, yet these produce problems such as fast degradation rates, reduced bioactivity, donor site morbidity or the risk of pathogen transmission. The development of bone tissue engineering has been used to create functional alternatives to regenerate bone. This can be achieved by producing bone tissue scaffolds that induce osteoconduction and integration, provide mechanical stability, and either integrate into the bone structure or degrade and are excreted by the body. A range of different biomaterials have been used to this end, each with their own advantages and disadvantages. This review will introduce the requirements of bone tissue engineering, beginning with the regeneration process of bone before exploring the requirements of bone tissue scaffolds. Aspects covered include the manufacturing process as well as the different materials used and the incorporation of bioactive molecules, growth factors and cells.</description><identifier>ISSN: 0391-3988</identifier><identifier>EISSN: 1724-6040</identifier><identifier>DOI: 10.1177/0391398819876286</identifier><identifier>PMID: 31544576</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Biological activity ; Biomaterials ; Biomedical materials ; Bone growth ; Bones ; Growth factors ; Health risks ; Manufacturing industry ; Morbidity ; Osteoconduction ; Regeneration ; Scaffolds ; Tissue engineering</subject><ispartof>International journal of artificial organs, 2020-02, Vol.43 (2), p.69-86</ispartof><rights>The Author(s) 2019</rights><rights>Copyright Wichtig Editore s.r.l. Feb 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c365t-ed249d6b4cd885bafd3e947c45a7c32296782fef46a80cb5bfa697f7a8fc0c53</citedby><cites>FETCH-LOGICAL-c365t-ed249d6b4cd885bafd3e947c45a7c32296782fef46a80cb5bfa697f7a8fc0c53</cites><orcidid>0000-0002-3001-1347 ; 0000-0002-3620-7199</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/0391398819876286$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/0391398819876286$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>313,314,780,784,792,21819,27922,27924,27925,43621,43622</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31544576$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Perić Kačarević, Željka</creatorcontrib><creatorcontrib>Rider, Patrick</creatorcontrib><creatorcontrib>Alkildani, Said</creatorcontrib><creatorcontrib>Retnasingh, Sujith</creatorcontrib><creatorcontrib>Pejakić, Marija</creatorcontrib><creatorcontrib>Schnettler, Reinhard</creatorcontrib><creatorcontrib>Gosau, Martin</creatorcontrib><creatorcontrib>Smeets, Ralf</creatorcontrib><creatorcontrib>Jung, Ole</creatorcontrib><creatorcontrib>Barbeck, Mike</creatorcontrib><title>An introduction to bone tissue engineering</title><title>International journal of artificial organs</title><addtitle>Int J Artif Organs</addtitle><description>Bone tissue has the capability to regenerate itself; however, defects of a critical size prevent the bone from regenerating and require additional support. To aid regeneration, bone scaffolds created out of autologous or allograft bone can be used, yet these produce problems such as fast degradation rates, reduced bioactivity, donor site morbidity or the risk of pathogen transmission. The development of bone tissue engineering has been used to create functional alternatives to regenerate bone. This can be achieved by producing bone tissue scaffolds that induce osteoconduction and integration, provide mechanical stability, and either integrate into the bone structure or degrade and are excreted by the body. A range of different biomaterials have been used to this end, each with their own advantages and disadvantages. This review will introduce the requirements of bone tissue engineering, beginning with the regeneration process of bone before exploring the requirements of bone tissue scaffolds. Aspects covered include the manufacturing process as well as the different materials used and the incorporation of bioactive molecules, growth factors and cells.</description><subject>Biological activity</subject><subject>Biomaterials</subject><subject>Biomedical materials</subject><subject>Bone growth</subject><subject>Bones</subject><subject>Growth factors</subject><subject>Health risks</subject><subject>Manufacturing industry</subject><subject>Morbidity</subject><subject>Osteoconduction</subject><subject>Regeneration</subject><subject>Scaffolds</subject><subject>Tissue engineering</subject><issn>0391-3988</issn><issn>1724-6040</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLw0AUhQdRbKzuXUnAnRCd92NZii8ouOk-TCZ3SoqdqTPJwn9vQquC4OpeON85Bw5C1wTfE6LUA2aGMKM1MVpJquUJKoiivJKY41NUTHI16TN0kfMWYyI5F-doxogYHyULdLcIZRf6FNvB9V0MZR_LJgYo-y7nAUoImy4ApC5sLtGZt-8Zro53jtZPj-vlS7V6e35dLlaVY1L0FbSUm1Y23LVai8b6loHhynFhlWOUGqk09eC5tBq7RjTeSqO8sto77ASbo9tD7D7FjwFyX2_jkMLYWFMmKNZY84nCB8qlmHMCX-9Tt7Ppsya4nrap_24zWm6OwUOzg_bH8D3GCFQHINsN_Lb-G_gFVUlq4w</recordid><startdate>202002</startdate><enddate>202002</enddate><creator>Perić Kačarević, Željka</creator><creator>Rider, Patrick</creator><creator>Alkildani, Said</creator><creator>Retnasingh, Sujith</creator><creator>Pejakić, Marija</creator><creator>Schnettler, Reinhard</creator><creator>Gosau, Martin</creator><creator>Smeets, Ralf</creator><creator>Jung, Ole</creator><creator>Barbeck, Mike</creator><general>SAGE Publications</general><general>Wichtig Editore s.r.l</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0002-3001-1347</orcidid><orcidid>https://orcid.org/0000-0002-3620-7199</orcidid></search><sort><creationdate>202002</creationdate><title>An introduction to bone tissue engineering</title><author>Perić Kačarević, Željka ; Rider, Patrick ; Alkildani, Said ; Retnasingh, Sujith ; Pejakić, Marija ; Schnettler, Reinhard ; Gosau, Martin ; Smeets, Ralf ; Jung, Ole ; Barbeck, Mike</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c365t-ed249d6b4cd885bafd3e947c45a7c32296782fef46a80cb5bfa697f7a8fc0c53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Biological activity</topic><topic>Biomaterials</topic><topic>Biomedical materials</topic><topic>Bone growth</topic><topic>Bones</topic><topic>Growth factors</topic><topic>Health risks</topic><topic>Manufacturing industry</topic><topic>Morbidity</topic><topic>Osteoconduction</topic><topic>Regeneration</topic><topic>Scaffolds</topic><topic>Tissue engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Perić Kačarević, Željka</creatorcontrib><creatorcontrib>Rider, Patrick</creatorcontrib><creatorcontrib>Alkildani, Said</creatorcontrib><creatorcontrib>Retnasingh, Sujith</creatorcontrib><creatorcontrib>Pejakić, Marija</creatorcontrib><creatorcontrib>Schnettler, Reinhard</creatorcontrib><creatorcontrib>Gosau, Martin</creatorcontrib><creatorcontrib>Smeets, Ralf</creatorcontrib><creatorcontrib>Jung, Ole</creatorcontrib><creatorcontrib>Barbeck, Mike</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>International journal of artificial organs</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Perić Kačarević, Željka</au><au>Rider, Patrick</au><au>Alkildani, Said</au><au>Retnasingh, Sujith</au><au>Pejakić, Marija</au><au>Schnettler, Reinhard</au><au>Gosau, Martin</au><au>Smeets, Ralf</au><au>Jung, Ole</au><au>Barbeck, Mike</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An introduction to bone tissue engineering</atitle><jtitle>International journal of artificial organs</jtitle><addtitle>Int J Artif Organs</addtitle><date>2020-02</date><risdate>2020</risdate><volume>43</volume><issue>2</issue><spage>69</spage><epage>86</epage><pages>69-86</pages><issn>0391-3988</issn><eissn>1724-6040</eissn><abstract>Bone tissue has the capability to regenerate itself; however, defects of a critical size prevent the bone from regenerating and require additional support. To aid regeneration, bone scaffolds created out of autologous or allograft bone can be used, yet these produce problems such as fast degradation rates, reduced bioactivity, donor site morbidity or the risk of pathogen transmission. The development of bone tissue engineering has been used to create functional alternatives to regenerate bone. This can be achieved by producing bone tissue scaffolds that induce osteoconduction and integration, provide mechanical stability, and either integrate into the bone structure or degrade and are excreted by the body. A range of different biomaterials have been used to this end, each with their own advantages and disadvantages. This review will introduce the requirements of bone tissue engineering, beginning with the regeneration process of bone before exploring the requirements of bone tissue scaffolds. Aspects covered include the manufacturing process as well as the different materials used and the incorporation of bioactive molecules, growth factors and cells.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><pmid>31544576</pmid><doi>10.1177/0391398819876286</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-3001-1347</orcidid><orcidid>https://orcid.org/0000-0002-3620-7199</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0391-3988 |
ispartof | International journal of artificial organs, 2020-02, Vol.43 (2), p.69-86 |
issn | 0391-3988 1724-6040 |
language | eng |
recordid | cdi_proquest_journals_2352080845 |
source | Access via SAGE |
subjects | Biological activity Biomaterials Biomedical materials Bone growth Bones Growth factors Health risks Manufacturing industry Morbidity Osteoconduction Regeneration Scaffolds Tissue engineering |
title | An introduction to bone tissue engineering |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T21%3A57%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20introduction%20to%20bone%20tissue%20engineering&rft.jtitle=International%20journal%20of%20artificial%20organs&rft.au=Peri%C4%87%20Ka%C4%8Darevi%C4%87,%20%C5%BDeljka&rft.date=2020-02&rft.volume=43&rft.issue=2&rft.spage=69&rft.epage=86&rft.pages=69-86&rft.issn=0391-3988&rft.eissn=1724-6040&rft_id=info:doi/10.1177/0391398819876286&rft_dat=%3Cproquest_cross%3E2352080845%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2352080845&rft_id=info:pmid/31544576&rft_sage_id=10.1177_0391398819876286&rfr_iscdi=true |