Video spatiotemporal mapping for human action recognition by convolutional neural network
In this paper, a 2D representation of a video clip called video spatiotemporal map (VSTM) is presented. VSTM is a compact representation of a video clip which incorporates its spatial and temporal properties. It is created by vertical concatenation of feature vectors generated from subsequent frames...
Gespeichert in:
Veröffentlicht in: | Pattern analysis and applications : PAA 2020-02, Vol.23 (1), p.265-279 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 279 |
---|---|
container_issue | 1 |
container_start_page | 265 |
container_title | Pattern analysis and applications : PAA |
container_volume | 23 |
creator | Zare, Amin Abrishami Moghaddam, Hamid Sharifi, Arash |
description | In this paper, a 2D representation of a video clip called video spatiotemporal map (VSTM) is presented. VSTM is a compact representation of a video clip which incorporates its spatial and temporal properties. It is created by vertical concatenation of feature vectors generated from subsequent frames. The feature vector corresponding to each frame is generated by applying wavelet transform to that frame (or its subtraction from the subsequent frame) and computing vertical and horizontal projection of quantized coefficients of some specific wavelet subbands. VSTM enables convolutional neural networks (CNNs) to process a video clip for human action recognition (HAR). The proposed approach benefits from power of CNNs to analyze visual patterns and attempts to overcome some CNN challenges such as variable video length problem and lack of training data that leads to over-fitting. VSTM presents a sequence of frames to CNN without imposing any additional computational cost to the CNN learning algorithm. The experimental results of the proposed method on the KTH, Weizmann, and UCF Sports HAR benchmark datasets have shown the supremacy of the proposed method compared with the state-of-the-art methods that used CNN to solve HAR problem. |
doi_str_mv | 10.1007/s10044-019-00788-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2352079321</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2352079321</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-67a557875269c50d78cbd6f13135c9aa89a5b9057a6f3df4d7e847752bba3d8f3</originalsourceid><addsrcrecordid>eNp9UE1PxCAUJEYT19U_4InEMwqlFDga41eyiRc1eiKUwtp1CxVazf572a3Rm5c3b_JmJi8DwCnB5wRjfpHyLEuEiUSZCoHIHpiRklLEGXvZ_91LcgiOUlphTCktxAy8PreNDTD1emjDYLs-RL2Gne771i-hCxG-jZ32UJt89zBaE5a-3e31BprgP8N63NLs8naMOxi-Qnw_BgdOr5M9-cE5eLq5fry6Q4uH2_urywUylMgBVVwzxgVnRSUNww0Xpm4qRyihzEithdSslphxXTnauLLhVpQ8y-ta00Y4OgdnU24fw8do06BWYYz5n6QKygrMJS1IVhWTysSQUrRO9bHtdNwogtW2QjVVqHKFaleh2proZEpZ7Jc2_kX_4_oGUOF1iw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2352079321</pqid></control><display><type>article</type><title>Video spatiotemporal mapping for human action recognition by convolutional neural network</title><source>SpringerLink Journals - AutoHoldings</source><creator>Zare, Amin ; Abrishami Moghaddam, Hamid ; Sharifi, Arash</creator><creatorcontrib>Zare, Amin ; Abrishami Moghaddam, Hamid ; Sharifi, Arash</creatorcontrib><description>In this paper, a 2D representation of a video clip called video spatiotemporal map (VSTM) is presented. VSTM is a compact representation of a video clip which incorporates its spatial and temporal properties. It is created by vertical concatenation of feature vectors generated from subsequent frames. The feature vector corresponding to each frame is generated by applying wavelet transform to that frame (or its subtraction from the subsequent frame) and computing vertical and horizontal projection of quantized coefficients of some specific wavelet subbands. VSTM enables convolutional neural networks (CNNs) to process a video clip for human action recognition (HAR). The proposed approach benefits from power of CNNs to analyze visual patterns and attempts to overcome some CNN challenges such as variable video length problem and lack of training data that leads to over-fitting. VSTM presents a sequence of frames to CNN without imposing any additional computational cost to the CNN learning algorithm. The experimental results of the proposed method on the KTH, Weizmann, and UCF Sports HAR benchmark datasets have shown the supremacy of the proposed method compared with the state-of-the-art methods that used CNN to solve HAR problem.</description><identifier>ISSN: 1433-7541</identifier><identifier>EISSN: 1433-755X</identifier><identifier>DOI: 10.1007/s10044-019-00788-1</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Algorithms ; Artificial neural networks ; Computer Science ; Human activity recognition ; Human motion ; Machine learning ; Mapping ; Neural networks ; Pattern Recognition ; Representations ; Subtraction ; Theoretical Advances ; Wavelet transforms</subject><ispartof>Pattern analysis and applications : PAA, 2020-02, Vol.23 (1), p.265-279</ispartof><rights>Springer-Verlag London Ltd., part of Springer Nature 2019</rights><rights>2019© Springer-Verlag London Ltd., part of Springer Nature 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-67a557875269c50d78cbd6f13135c9aa89a5b9057a6f3df4d7e847752bba3d8f3</citedby><cites>FETCH-LOGICAL-c319t-67a557875269c50d78cbd6f13135c9aa89a5b9057a6f3df4d7e847752bba3d8f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10044-019-00788-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10044-019-00788-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Zare, Amin</creatorcontrib><creatorcontrib>Abrishami Moghaddam, Hamid</creatorcontrib><creatorcontrib>Sharifi, Arash</creatorcontrib><title>Video spatiotemporal mapping for human action recognition by convolutional neural network</title><title>Pattern analysis and applications : PAA</title><addtitle>Pattern Anal Applic</addtitle><description>In this paper, a 2D representation of a video clip called video spatiotemporal map (VSTM) is presented. VSTM is a compact representation of a video clip which incorporates its spatial and temporal properties. It is created by vertical concatenation of feature vectors generated from subsequent frames. The feature vector corresponding to each frame is generated by applying wavelet transform to that frame (or its subtraction from the subsequent frame) and computing vertical and horizontal projection of quantized coefficients of some specific wavelet subbands. VSTM enables convolutional neural networks (CNNs) to process a video clip for human action recognition (HAR). The proposed approach benefits from power of CNNs to analyze visual patterns and attempts to overcome some CNN challenges such as variable video length problem and lack of training data that leads to over-fitting. VSTM presents a sequence of frames to CNN without imposing any additional computational cost to the CNN learning algorithm. The experimental results of the proposed method on the KTH, Weizmann, and UCF Sports HAR benchmark datasets have shown the supremacy of the proposed method compared with the state-of-the-art methods that used CNN to solve HAR problem.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Computer Science</subject><subject>Human activity recognition</subject><subject>Human motion</subject><subject>Machine learning</subject><subject>Mapping</subject><subject>Neural networks</subject><subject>Pattern Recognition</subject><subject>Representations</subject><subject>Subtraction</subject><subject>Theoretical Advances</subject><subject>Wavelet transforms</subject><issn>1433-7541</issn><issn>1433-755X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9UE1PxCAUJEYT19U_4InEMwqlFDga41eyiRc1eiKUwtp1CxVazf572a3Rm5c3b_JmJi8DwCnB5wRjfpHyLEuEiUSZCoHIHpiRklLEGXvZ_91LcgiOUlphTCktxAy8PreNDTD1emjDYLs-RL2Gne771i-hCxG-jZ32UJt89zBaE5a-3e31BprgP8N63NLs8naMOxi-Qnw_BgdOr5M9-cE5eLq5fry6Q4uH2_urywUylMgBVVwzxgVnRSUNww0Xpm4qRyihzEithdSslphxXTnauLLhVpQ8y-ta00Y4OgdnU24fw8do06BWYYz5n6QKygrMJS1IVhWTysSQUrRO9bHtdNwogtW2QjVVqHKFaleh2proZEpZ7Jc2_kX_4_oGUOF1iw</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Zare, Amin</creator><creator>Abrishami Moghaddam, Hamid</creator><creator>Sharifi, Arash</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200201</creationdate><title>Video spatiotemporal mapping for human action recognition by convolutional neural network</title><author>Zare, Amin ; Abrishami Moghaddam, Hamid ; Sharifi, Arash</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-67a557875269c50d78cbd6f13135c9aa89a5b9057a6f3df4d7e847752bba3d8f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Computer Science</topic><topic>Human activity recognition</topic><topic>Human motion</topic><topic>Machine learning</topic><topic>Mapping</topic><topic>Neural networks</topic><topic>Pattern Recognition</topic><topic>Representations</topic><topic>Subtraction</topic><topic>Theoretical Advances</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zare, Amin</creatorcontrib><creatorcontrib>Abrishami Moghaddam, Hamid</creatorcontrib><creatorcontrib>Sharifi, Arash</creatorcontrib><collection>CrossRef</collection><jtitle>Pattern analysis and applications : PAA</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zare, Amin</au><au>Abrishami Moghaddam, Hamid</au><au>Sharifi, Arash</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Video spatiotemporal mapping for human action recognition by convolutional neural network</atitle><jtitle>Pattern analysis and applications : PAA</jtitle><stitle>Pattern Anal Applic</stitle><date>2020-02-01</date><risdate>2020</risdate><volume>23</volume><issue>1</issue><spage>265</spage><epage>279</epage><pages>265-279</pages><issn>1433-7541</issn><eissn>1433-755X</eissn><abstract>In this paper, a 2D representation of a video clip called video spatiotemporal map (VSTM) is presented. VSTM is a compact representation of a video clip which incorporates its spatial and temporal properties. It is created by vertical concatenation of feature vectors generated from subsequent frames. The feature vector corresponding to each frame is generated by applying wavelet transform to that frame (or its subtraction from the subsequent frame) and computing vertical and horizontal projection of quantized coefficients of some specific wavelet subbands. VSTM enables convolutional neural networks (CNNs) to process a video clip for human action recognition (HAR). The proposed approach benefits from power of CNNs to analyze visual patterns and attempts to overcome some CNN challenges such as variable video length problem and lack of training data that leads to over-fitting. VSTM presents a sequence of frames to CNN without imposing any additional computational cost to the CNN learning algorithm. The experimental results of the proposed method on the KTH, Weizmann, and UCF Sports HAR benchmark datasets have shown the supremacy of the proposed method compared with the state-of-the-art methods that used CNN to solve HAR problem.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s10044-019-00788-1</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1433-7541 |
ispartof | Pattern analysis and applications : PAA, 2020-02, Vol.23 (1), p.265-279 |
issn | 1433-7541 1433-755X |
language | eng |
recordid | cdi_proquest_journals_2352079321 |
source | SpringerLink Journals - AutoHoldings |
subjects | Algorithms Artificial neural networks Computer Science Human activity recognition Human motion Machine learning Mapping Neural networks Pattern Recognition Representations Subtraction Theoretical Advances Wavelet transforms |
title | Video spatiotemporal mapping for human action recognition by convolutional neural network |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T23%3A21%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Video%20spatiotemporal%20mapping%20for%20human%20action%20recognition%20by%20convolutional%20neural%20network&rft.jtitle=Pattern%20analysis%20and%20applications%20:%20PAA&rft.au=Zare,%20Amin&rft.date=2020-02-01&rft.volume=23&rft.issue=1&rft.spage=265&rft.epage=279&rft.pages=265-279&rft.issn=1433-7541&rft.eissn=1433-755X&rft_id=info:doi/10.1007/s10044-019-00788-1&rft_dat=%3Cproquest_cross%3E2352079321%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2352079321&rft_id=info:pmid/&rfr_iscdi=true |