Deep learned Inter-Channel Colored Texture Pattern: a new chromatic-texture descriptor

Texture is a dominant tool for feature extraction. Incorporation of inter-channel chromatic information along with the texture feature will improve the accuracy of feature extraction. This paper provides deep learned Inter-Channel Colored Texture Pattern which gives the inter-channel chromatic textu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pattern analysis and applications : PAA 2020-02, Vol.23 (1), p.239-251
Hauptverfasser: Jeena Jacob, I., Srinivasagan, K. G., Ebby Darney, P., Jayapriya, K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 251
container_issue 1
container_start_page 239
container_title Pattern analysis and applications : PAA
container_volume 23
creator Jeena Jacob, I.
Srinivasagan, K. G.
Ebby Darney, P.
Jayapriya, K.
description Texture is a dominant tool for feature extraction. Incorporation of inter-channel chromatic information along with the texture feature will improve the accuracy of feature extraction. This paper provides deep learned Inter-Channel Colored Texture Pattern which gives the inter-channel chromatic texture information of an image. The information is extracted individually from the co-occurrent pixel values of various channels. It affords the unique channel-wise information and its relation with neighboring pixel information of opponent space. Deep learning with convolutional neural network is applied for learning the feature based on color and texture. The experiments for content-based image retrieval are carried out on three different databases which vary in nature: CIFAR-10 dataset (DB1) (Krizhevsky in Learning multiple layers of features from tiny images, University of Toronto, 2009 ), Corel database (DB2) (Corel 1000 and Corel 10000 image database, http://wang.ist.psu.edu/docs/related.shtml ) and Facescrub dataset (DB3) (Ng and Winkler in 2014 IEEE international conference on image processing (ICIP), pp 343–347, 2014 ). Facescrub dataset is used for face recognition. The experimental analysis by applying this descriptor provides considerable improvement from the previous works for content-based image retrieval and face recognition.
doi_str_mv 10.1007/s10044-019-00780-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2352079174</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2352079174</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-52fc76e080b357bb1ef446f98a49b2a32faf364964812d615f0f1c573167538b3</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMoWKsv4GrAdTTXycSd1FuhoIsq7kJmemJbppkxSVHf3ugU3bk51-8_B36ETik5p4Soi5ijEJhQjXNbEaz30IgKzrGS8mX_txb0EB3FuCaEc86qEXq-BuiLFmzwsCimPkHAk6X1Htpi0rVdyNM5fKRtgOLRprz2l4UtPLwXzTJ0G5tWDU47YAGxCas-deEYHTjbRjjZ5TF6ur2ZT-7x7OFuOrma4YZTnbBkrlElkIrUXKq6puCEKJ2urNA1s5w563gpdCkqyhYllY442kjFaakkr2o-RmfD3T50b1uIyay7bfD5pWFcMqI0VSJTbKCa0MUYwJk-rDY2fBpKzLd_ZvDPZP_Mj39GZxEfRDHD_hXC3-l_VF-4aXJs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2352079174</pqid></control><display><type>article</type><title>Deep learned Inter-Channel Colored Texture Pattern: a new chromatic-texture descriptor</title><source>Springer Nature - Complete Springer Journals</source><creator>Jeena Jacob, I. ; Srinivasagan, K. G. ; Ebby Darney, P. ; Jayapriya, K.</creator><creatorcontrib>Jeena Jacob, I. ; Srinivasagan, K. G. ; Ebby Darney, P. ; Jayapriya, K.</creatorcontrib><description>Texture is a dominant tool for feature extraction. Incorporation of inter-channel chromatic information along with the texture feature will improve the accuracy of feature extraction. This paper provides deep learned Inter-Channel Colored Texture Pattern which gives the inter-channel chromatic texture information of an image. The information is extracted individually from the co-occurrent pixel values of various channels. It affords the unique channel-wise information and its relation with neighboring pixel information of opponent space. Deep learning with convolutional neural network is applied for learning the feature based on color and texture. The experiments for content-based image retrieval are carried out on three different databases which vary in nature: CIFAR-10 dataset (DB1) (Krizhevsky in Learning multiple layers of features from tiny images, University of Toronto, 2009 ), Corel database (DB2) (Corel 1000 and Corel 10000 image database, http://wang.ist.psu.edu/docs/related.shtml ) and Facescrub dataset (DB3) (Ng and Winkler in 2014 IEEE international conference on image processing (ICIP), pp 343–347, 2014 ). Facescrub dataset is used for face recognition. The experimental analysis by applying this descriptor provides considerable improvement from the previous works for content-based image retrieval and face recognition.</description><identifier>ISSN: 1433-7541</identifier><identifier>EISSN: 1433-755X</identifier><identifier>DOI: 10.1007/s10044-019-00780-9</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Artificial neural networks ; Computer Science ; Datasets ; Face recognition ; Feature extraction ; Image management ; Image processing ; Image retrieval ; Machine learning ; Object recognition ; Pattern Recognition ; Pixels ; Texture ; Theoretical Advances</subject><ispartof>Pattern analysis and applications : PAA, 2020-02, Vol.23 (1), p.239-251</ispartof><rights>Springer-Verlag London Ltd., part of Springer Nature 2019</rights><rights>2019© Springer-Verlag London Ltd., part of Springer Nature 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-52fc76e080b357bb1ef446f98a49b2a32faf364964812d615f0f1c573167538b3</citedby><cites>FETCH-LOGICAL-c319t-52fc76e080b357bb1ef446f98a49b2a32faf364964812d615f0f1c573167538b3</cites><orcidid>0000-0001-6706-1017</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10044-019-00780-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10044-019-00780-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids></links><search><creatorcontrib>Jeena Jacob, I.</creatorcontrib><creatorcontrib>Srinivasagan, K. G.</creatorcontrib><creatorcontrib>Ebby Darney, P.</creatorcontrib><creatorcontrib>Jayapriya, K.</creatorcontrib><title>Deep learned Inter-Channel Colored Texture Pattern: a new chromatic-texture descriptor</title><title>Pattern analysis and applications : PAA</title><addtitle>Pattern Anal Applic</addtitle><description>Texture is a dominant tool for feature extraction. Incorporation of inter-channel chromatic information along with the texture feature will improve the accuracy of feature extraction. This paper provides deep learned Inter-Channel Colored Texture Pattern which gives the inter-channel chromatic texture information of an image. The information is extracted individually from the co-occurrent pixel values of various channels. It affords the unique channel-wise information and its relation with neighboring pixel information of opponent space. Deep learning with convolutional neural network is applied for learning the feature based on color and texture. The experiments for content-based image retrieval are carried out on three different databases which vary in nature: CIFAR-10 dataset (DB1) (Krizhevsky in Learning multiple layers of features from tiny images, University of Toronto, 2009 ), Corel database (DB2) (Corel 1000 and Corel 10000 image database, http://wang.ist.psu.edu/docs/related.shtml ) and Facescrub dataset (DB3) (Ng and Winkler in 2014 IEEE international conference on image processing (ICIP), pp 343–347, 2014 ). Facescrub dataset is used for face recognition. The experimental analysis by applying this descriptor provides considerable improvement from the previous works for content-based image retrieval and face recognition.</description><subject>Artificial neural networks</subject><subject>Computer Science</subject><subject>Datasets</subject><subject>Face recognition</subject><subject>Feature extraction</subject><subject>Image management</subject><subject>Image processing</subject><subject>Image retrieval</subject><subject>Machine learning</subject><subject>Object recognition</subject><subject>Pattern Recognition</subject><subject>Pixels</subject><subject>Texture</subject><subject>Theoretical Advances</subject><issn>1433-7541</issn><issn>1433-755X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKAzEUhoMoWKsv4GrAdTTXycSd1FuhoIsq7kJmemJbppkxSVHf3ugU3bk51-8_B36ETik5p4Soi5ijEJhQjXNbEaz30IgKzrGS8mX_txb0EB3FuCaEc86qEXq-BuiLFmzwsCimPkHAk6X1Htpi0rVdyNM5fKRtgOLRprz2l4UtPLwXzTJ0G5tWDU47YAGxCas-deEYHTjbRjjZ5TF6ur2ZT-7x7OFuOrma4YZTnbBkrlElkIrUXKq6puCEKJ2urNA1s5w563gpdCkqyhYllY442kjFaakkr2o-RmfD3T50b1uIyay7bfD5pWFcMqI0VSJTbKCa0MUYwJk-rDY2fBpKzLd_ZvDPZP_Mj39GZxEfRDHD_hXC3-l_VF-4aXJs</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Jeena Jacob, I.</creator><creator>Srinivasagan, K. G.</creator><creator>Ebby Darney, P.</creator><creator>Jayapriya, K.</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-6706-1017</orcidid></search><sort><creationdate>20200201</creationdate><title>Deep learned Inter-Channel Colored Texture Pattern: a new chromatic-texture descriptor</title><author>Jeena Jacob, I. ; Srinivasagan, K. G. ; Ebby Darney, P. ; Jayapriya, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-52fc76e080b357bb1ef446f98a49b2a32faf364964812d615f0f1c573167538b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Artificial neural networks</topic><topic>Computer Science</topic><topic>Datasets</topic><topic>Face recognition</topic><topic>Feature extraction</topic><topic>Image management</topic><topic>Image processing</topic><topic>Image retrieval</topic><topic>Machine learning</topic><topic>Object recognition</topic><topic>Pattern Recognition</topic><topic>Pixels</topic><topic>Texture</topic><topic>Theoretical Advances</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jeena Jacob, I.</creatorcontrib><creatorcontrib>Srinivasagan, K. G.</creatorcontrib><creatorcontrib>Ebby Darney, P.</creatorcontrib><creatorcontrib>Jayapriya, K.</creatorcontrib><collection>CrossRef</collection><jtitle>Pattern analysis and applications : PAA</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jeena Jacob, I.</au><au>Srinivasagan, K. G.</au><au>Ebby Darney, P.</au><au>Jayapriya, K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep learned Inter-Channel Colored Texture Pattern: a new chromatic-texture descriptor</atitle><jtitle>Pattern analysis and applications : PAA</jtitle><stitle>Pattern Anal Applic</stitle><date>2020-02-01</date><risdate>2020</risdate><volume>23</volume><issue>1</issue><spage>239</spage><epage>251</epage><pages>239-251</pages><issn>1433-7541</issn><eissn>1433-755X</eissn><abstract>Texture is a dominant tool for feature extraction. Incorporation of inter-channel chromatic information along with the texture feature will improve the accuracy of feature extraction. This paper provides deep learned Inter-Channel Colored Texture Pattern which gives the inter-channel chromatic texture information of an image. The information is extracted individually from the co-occurrent pixel values of various channels. It affords the unique channel-wise information and its relation with neighboring pixel information of opponent space. Deep learning with convolutional neural network is applied for learning the feature based on color and texture. The experiments for content-based image retrieval are carried out on three different databases which vary in nature: CIFAR-10 dataset (DB1) (Krizhevsky in Learning multiple layers of features from tiny images, University of Toronto, 2009 ), Corel database (DB2) (Corel 1000 and Corel 10000 image database, http://wang.ist.psu.edu/docs/related.shtml ) and Facescrub dataset (DB3) (Ng and Winkler in 2014 IEEE international conference on image processing (ICIP), pp 343–347, 2014 ). Facescrub dataset is used for face recognition. The experimental analysis by applying this descriptor provides considerable improvement from the previous works for content-based image retrieval and face recognition.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s10044-019-00780-9</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-6706-1017</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1433-7541
ispartof Pattern analysis and applications : PAA, 2020-02, Vol.23 (1), p.239-251
issn 1433-7541
1433-755X
language eng
recordid cdi_proquest_journals_2352079174
source Springer Nature - Complete Springer Journals
subjects Artificial neural networks
Computer Science
Datasets
Face recognition
Feature extraction
Image management
Image processing
Image retrieval
Machine learning
Object recognition
Pattern Recognition
Pixels
Texture
Theoretical Advances
title Deep learned Inter-Channel Colored Texture Pattern: a new chromatic-texture descriptor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T07%3A11%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20learned%20Inter-Channel%20Colored%20Texture%20Pattern:%20a%20new%20chromatic-texture%20descriptor&rft.jtitle=Pattern%20analysis%20and%20applications%20:%20PAA&rft.au=Jeena%20Jacob,%20I.&rft.date=2020-02-01&rft.volume=23&rft.issue=1&rft.spage=239&rft.epage=251&rft.pages=239-251&rft.issn=1433-7541&rft.eissn=1433-755X&rft_id=info:doi/10.1007/s10044-019-00780-9&rft_dat=%3Cproquest_cross%3E2352079174%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2352079174&rft_id=info:pmid/&rfr_iscdi=true