Polypyrrole/graphene oxide composite coating on Ti implants: a promising material for biomedical applications
Advanced materials can be developed by the combination of synthetic polymer and nanomaterial for biomedical application. Polypyrrole/graphene oxide (PPy/GO) composite coating on Ti metal was developed through electropolymerization of pyrrole by varying the amount of GO in aqueous oxalic acid solutio...
Gespeichert in:
Veröffentlicht in: | Journal of materials science 2020-04, Vol.55 (12), p.5211-5229 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5229 |
---|---|
container_issue | 12 |
container_start_page | 5211 |
container_title | Journal of materials science |
container_volume | 55 |
creator | Rikhari, Bhavana Mani, S. Pugal Rajendran, N. |
description | Advanced materials can be developed by the combination of synthetic polymer and nanomaterial for biomedical application. Polypyrrole/graphene oxide (PPy/GO) composite coating on Ti metal was developed through electropolymerization of pyrrole by varying the amount of GO in aqueous oxalic acid solution. The influence of GO in the PPy matrix was confirmed by scanning electron microscopy studies. Structural interactions between PPy and GO in the composite coating were studied using ATR-FTIR, solid
13
C NMR and Raman spectroscopy. The higher surface roughness and the lower wettability of the composite-coated Ti favor biocompatibility. The increase in adhesion strength of the composite coating was analyzed by the cross-hatch adhesion test. Potentiodynamic polarization studies showed a higher polarization resistance (
R
p
) and lower corrosion rates for composite coatings. Dynamic electrochemical impedance spectroscopy studies confirmed the PPy/GO composite coating exhibited a higher impedance from − 0.55 to 1.25 V in SBF solution. Bode impedance and Bode phase angle results revealed a higher resistance for PPy/GO composite-coated Ti. Immersion studies of PPy/GO composite coating in SBF solution revealed the growth of dense hydroxyapatite (Hap.) over Ti metal. Further, in vitro cell culture studies were carried out by MG-63 cells to assess the biocompatibility of PPy/GO composite coating on the substrate. Improved corrosion protection and biocompatibility behavior of PPy/GO composite-coated Ti suggests the potential candidate for biomedical applications. |
doi_str_mv | 10.1007/s10853-019-04228-7 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2352072280</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A612933044</galeid><sourcerecordid>A612933044</sourcerecordid><originalsourceid>FETCH-LOGICAL-c448t-88b95b70579b8e60360963e4cb7eb21f5b3b5b6d66e15caf8c5262f9955bea833</originalsourceid><addsrcrecordid>eNp9kVFvFCEQx4nRxLP6BXzaxCcfth1gYVnfmkZtkyYarc8EuNmVZhdW4JLet5fzmuglpuGBGfj9hxn-hLylcE4B-otMQQneAh1a6BhTbf-MbKjoedsp4M_JBoCxlnWSviSvcr4HANEzuiHL1zjv131KccaLKZn1JwZs4oPfYuPissbsyyEyxYepiaG5841f1tmEkj80pllTXHw-3C2mYPJmbsaYGuvjglvvamrWda5B8THk1-TFaOaMbx73M_Lj08e7q-v29svnm6vL29Z1nSqtUnYQtq8tDlahBC5hkBw7Z3u0jI7Ccius3EqJVDgzKieYZOMwCGHRKM7PyLtj3drerx3mou_jLoX6pGZcMOjrF8HTVDfQoQf2T63JzKh9GGNJxtWhnb6UlA2cQ9dV6vw_VF1bXLyLAUdfz08E708ElSn4UCazy1nffP92yrIj61LMOeGo1-QXk_aagj74r4_-6-q__uO_7quIH0W5wmHC9He6J1S_AcUGsQ4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2352072280</pqid></control><display><type>article</type><title>Polypyrrole/graphene oxide composite coating on Ti implants: a promising material for biomedical applications</title><source>SpringerLink Journals - AutoHoldings</source><creator>Rikhari, Bhavana ; Mani, S. Pugal ; Rajendran, N.</creator><creatorcontrib>Rikhari, Bhavana ; Mani, S. Pugal ; Rajendran, N.</creatorcontrib><description>Advanced materials can be developed by the combination of synthetic polymer and nanomaterial for biomedical application. Polypyrrole/graphene oxide (PPy/GO) composite coating on Ti metal was developed through electropolymerization of pyrrole by varying the amount of GO in aqueous oxalic acid solution. The influence of GO in the PPy matrix was confirmed by scanning electron microscopy studies. Structural interactions between PPy and GO in the composite coating were studied using ATR-FTIR, solid
13
C NMR and Raman spectroscopy. The higher surface roughness and the lower wettability of the composite-coated Ti favor biocompatibility. The increase in adhesion strength of the composite coating was analyzed by the cross-hatch adhesion test. Potentiodynamic polarization studies showed a higher polarization resistance (
R
p
) and lower corrosion rates for composite coatings. Dynamic electrochemical impedance spectroscopy studies confirmed the PPy/GO composite coating exhibited a higher impedance from − 0.55 to 1.25 V in SBF solution. Bode impedance and Bode phase angle results revealed a higher resistance for PPy/GO composite-coated Ti. Immersion studies of PPy/GO composite coating in SBF solution revealed the growth of dense hydroxyapatite (Hap.) over Ti metal. Further, in vitro cell culture studies were carried out by MG-63 cells to assess the biocompatibility of PPy/GO composite coating on the substrate. Improved corrosion protection and biocompatibility behavior of PPy/GO composite-coated Ti suggests the potential candidate for biomedical applications.</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-019-04228-7</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Adhesion tests ; Adhesive strength ; Biocompatibility ; Biomedical engineering ; Biomedical materials ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Classical Mechanics ; Coatings ; Corrosion and anti-corrosives ; Corrosion prevention ; Corrosion rate ; Corrosion resistance ; Crystallography and Scattering Methods ; Electrochemical impedance spectroscopy ; Graphene ; Hydroxyapatite ; Materials for Life Sciences ; Materials Science ; Nanomaterials ; NMR ; Nuclear magnetic resonance ; Nuclear magnetic resonance spectroscopy ; Oxalates ; Oxalic acid ; Polarization ; Polymer Sciences ; Polymerization ; Polymers ; Polypyrroles ; Protective coatings ; Raman spectroscopy ; Solid Mechanics ; Spectrum analysis ; Submerging ; Substrates ; Surface roughness ; Surgical implants ; Titanium ; Wettability</subject><ispartof>Journal of materials science, 2020-04, Vol.55 (12), p.5211-5229</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>COPYRIGHT 2020 Springer</rights><rights>2020© Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Journal of Materials Science is a copyright of Springer, (2020). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c448t-88b95b70579b8e60360963e4cb7eb21f5b3b5b6d66e15caf8c5262f9955bea833</citedby><cites>FETCH-LOGICAL-c448t-88b95b70579b8e60360963e4cb7eb21f5b3b5b6d66e15caf8c5262f9955bea833</cites><orcidid>0000-0001-6394-1260</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10853-019-04228-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10853-019-04228-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Rikhari, Bhavana</creatorcontrib><creatorcontrib>Mani, S. Pugal</creatorcontrib><creatorcontrib>Rajendran, N.</creatorcontrib><title>Polypyrrole/graphene oxide composite coating on Ti implants: a promising material for biomedical applications</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>Advanced materials can be developed by the combination of synthetic polymer and nanomaterial for biomedical application. Polypyrrole/graphene oxide (PPy/GO) composite coating on Ti metal was developed through electropolymerization of pyrrole by varying the amount of GO in aqueous oxalic acid solution. The influence of GO in the PPy matrix was confirmed by scanning electron microscopy studies. Structural interactions between PPy and GO in the composite coating were studied using ATR-FTIR, solid
13
C NMR and Raman spectroscopy. The higher surface roughness and the lower wettability of the composite-coated Ti favor biocompatibility. The increase in adhesion strength of the composite coating was analyzed by the cross-hatch adhesion test. Potentiodynamic polarization studies showed a higher polarization resistance (
R
p
) and lower corrosion rates for composite coatings. Dynamic electrochemical impedance spectroscopy studies confirmed the PPy/GO composite coating exhibited a higher impedance from − 0.55 to 1.25 V in SBF solution. Bode impedance and Bode phase angle results revealed a higher resistance for PPy/GO composite-coated Ti. Immersion studies of PPy/GO composite coating in SBF solution revealed the growth of dense hydroxyapatite (Hap.) over Ti metal. Further, in vitro cell culture studies were carried out by MG-63 cells to assess the biocompatibility of PPy/GO composite coating on the substrate. Improved corrosion protection and biocompatibility behavior of PPy/GO composite-coated Ti suggests the potential candidate for biomedical applications.</description><subject>Adhesion tests</subject><subject>Adhesive strength</subject><subject>Biocompatibility</subject><subject>Biomedical engineering</subject><subject>Biomedical materials</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Coatings</subject><subject>Corrosion and anti-corrosives</subject><subject>Corrosion prevention</subject><subject>Corrosion rate</subject><subject>Corrosion resistance</subject><subject>Crystallography and Scattering Methods</subject><subject>Electrochemical impedance spectroscopy</subject><subject>Graphene</subject><subject>Hydroxyapatite</subject><subject>Materials for Life Sciences</subject><subject>Materials Science</subject><subject>Nanomaterials</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Nuclear magnetic resonance spectroscopy</subject><subject>Oxalates</subject><subject>Oxalic acid</subject><subject>Polarization</subject><subject>Polymer Sciences</subject><subject>Polymerization</subject><subject>Polymers</subject><subject>Polypyrroles</subject><subject>Protective coatings</subject><subject>Raman spectroscopy</subject><subject>Solid Mechanics</subject><subject>Spectrum analysis</subject><subject>Submerging</subject><subject>Substrates</subject><subject>Surface roughness</subject><subject>Surgical implants</subject><subject>Titanium</subject><subject>Wettability</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kVFvFCEQx4nRxLP6BXzaxCcfth1gYVnfmkZtkyYarc8EuNmVZhdW4JLet5fzmuglpuGBGfj9hxn-hLylcE4B-otMQQneAh1a6BhTbf-MbKjoedsp4M_JBoCxlnWSviSvcr4HANEzuiHL1zjv131KccaLKZn1JwZs4oPfYuPissbsyyEyxYepiaG5841f1tmEkj80pllTXHw-3C2mYPJmbsaYGuvjglvvamrWda5B8THk1-TFaOaMbx73M_Lj08e7q-v29svnm6vL29Z1nSqtUnYQtq8tDlahBC5hkBw7Z3u0jI7Ccius3EqJVDgzKieYZOMwCGHRKM7PyLtj3drerx3mou_jLoX6pGZcMOjrF8HTVDfQoQf2T63JzKh9GGNJxtWhnb6UlA2cQ9dV6vw_VF1bXLyLAUdfz08E708ElSn4UCazy1nffP92yrIj61LMOeGo1-QXk_aagj74r4_-6-q__uO_7quIH0W5wmHC9He6J1S_AcUGsQ4</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Rikhari, Bhavana</creator><creator>Mani, S. Pugal</creator><creator>Rajendran, N.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0001-6394-1260</orcidid></search><sort><creationdate>20200401</creationdate><title>Polypyrrole/graphene oxide composite coating on Ti implants: a promising material for biomedical applications</title><author>Rikhari, Bhavana ; Mani, S. Pugal ; Rajendran, N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c448t-88b95b70579b8e60360963e4cb7eb21f5b3b5b6d66e15caf8c5262f9955bea833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adhesion tests</topic><topic>Adhesive strength</topic><topic>Biocompatibility</topic><topic>Biomedical engineering</topic><topic>Biomedical materials</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Coatings</topic><topic>Corrosion and anti-corrosives</topic><topic>Corrosion prevention</topic><topic>Corrosion rate</topic><topic>Corrosion resistance</topic><topic>Crystallography and Scattering Methods</topic><topic>Electrochemical impedance spectroscopy</topic><topic>Graphene</topic><topic>Hydroxyapatite</topic><topic>Materials for Life Sciences</topic><topic>Materials Science</topic><topic>Nanomaterials</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Nuclear magnetic resonance spectroscopy</topic><topic>Oxalates</topic><topic>Oxalic acid</topic><topic>Polarization</topic><topic>Polymer Sciences</topic><topic>Polymerization</topic><topic>Polymers</topic><topic>Polypyrroles</topic><topic>Protective coatings</topic><topic>Raman spectroscopy</topic><topic>Solid Mechanics</topic><topic>Spectrum analysis</topic><topic>Submerging</topic><topic>Substrates</topic><topic>Surface roughness</topic><topic>Surgical implants</topic><topic>Titanium</topic><topic>Wettability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rikhari, Bhavana</creatorcontrib><creatorcontrib>Mani, S. Pugal</creatorcontrib><creatorcontrib>Rajendran, N.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rikhari, Bhavana</au><au>Mani, S. Pugal</au><au>Rajendran, N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Polypyrrole/graphene oxide composite coating on Ti implants: a promising material for biomedical applications</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2020-04-01</date><risdate>2020</risdate><volume>55</volume><issue>12</issue><spage>5211</spage><epage>5229</epage><pages>5211-5229</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>Advanced materials can be developed by the combination of synthetic polymer and nanomaterial for biomedical application. Polypyrrole/graphene oxide (PPy/GO) composite coating on Ti metal was developed through electropolymerization of pyrrole by varying the amount of GO in aqueous oxalic acid solution. The influence of GO in the PPy matrix was confirmed by scanning electron microscopy studies. Structural interactions between PPy and GO in the composite coating were studied using ATR-FTIR, solid
13
C NMR and Raman spectroscopy. The higher surface roughness and the lower wettability of the composite-coated Ti favor biocompatibility. The increase in adhesion strength of the composite coating was analyzed by the cross-hatch adhesion test. Potentiodynamic polarization studies showed a higher polarization resistance (
R
p
) and lower corrosion rates for composite coatings. Dynamic electrochemical impedance spectroscopy studies confirmed the PPy/GO composite coating exhibited a higher impedance from − 0.55 to 1.25 V in SBF solution. Bode impedance and Bode phase angle results revealed a higher resistance for PPy/GO composite-coated Ti. Immersion studies of PPy/GO composite coating in SBF solution revealed the growth of dense hydroxyapatite (Hap.) over Ti metal. Further, in vitro cell culture studies were carried out by MG-63 cells to assess the biocompatibility of PPy/GO composite coating on the substrate. Improved corrosion protection and biocompatibility behavior of PPy/GO composite-coated Ti suggests the potential candidate for biomedical applications.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10853-019-04228-7</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0001-6394-1260</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2461 |
ispartof | Journal of materials science, 2020-04, Vol.55 (12), p.5211-5229 |
issn | 0022-2461 1573-4803 |
language | eng |
recordid | cdi_proquest_journals_2352072280 |
source | SpringerLink Journals - AutoHoldings |
subjects | Adhesion tests Adhesive strength Biocompatibility Biomedical engineering Biomedical materials Characterization and Evaluation of Materials Chemistry and Materials Science Classical Mechanics Coatings Corrosion and anti-corrosives Corrosion prevention Corrosion rate Corrosion resistance Crystallography and Scattering Methods Electrochemical impedance spectroscopy Graphene Hydroxyapatite Materials for Life Sciences Materials Science Nanomaterials NMR Nuclear magnetic resonance Nuclear magnetic resonance spectroscopy Oxalates Oxalic acid Polarization Polymer Sciences Polymerization Polymers Polypyrroles Protective coatings Raman spectroscopy Solid Mechanics Spectrum analysis Submerging Substrates Surface roughness Surgical implants Titanium Wettability |
title | Polypyrrole/graphene oxide composite coating on Ti implants: a promising material for biomedical applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T05%3A22%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Polypyrrole/graphene%20oxide%20composite%20coating%20on%20Ti%20implants:%20a%20promising%20material%20for%20biomedical%20applications&rft.jtitle=Journal%20of%20materials%20science&rft.au=Rikhari,%20Bhavana&rft.date=2020-04-01&rft.volume=55&rft.issue=12&rft.spage=5211&rft.epage=5229&rft.pages=5211-5229&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-019-04228-7&rft_dat=%3Cgale_proqu%3EA612933044%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2352072280&rft_id=info:pmid/&rft_galeid=A612933044&rfr_iscdi=true |