Polypyrrole/graphene oxide composite coating on Ti implants: a promising material for biomedical applications

Advanced materials can be developed by the combination of synthetic polymer and nanomaterial for biomedical application. Polypyrrole/graphene oxide (PPy/GO) composite coating on Ti metal was developed through electropolymerization of pyrrole by varying the amount of GO in aqueous oxalic acid solutio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science 2020-04, Vol.55 (12), p.5211-5229
Hauptverfasser: Rikhari, Bhavana, Mani, S. Pugal, Rajendran, N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5229
container_issue 12
container_start_page 5211
container_title Journal of materials science
container_volume 55
creator Rikhari, Bhavana
Mani, S. Pugal
Rajendran, N.
description Advanced materials can be developed by the combination of synthetic polymer and nanomaterial for biomedical application. Polypyrrole/graphene oxide (PPy/GO) composite coating on Ti metal was developed through electropolymerization of pyrrole by varying the amount of GO in aqueous oxalic acid solution. The influence of GO in the PPy matrix was confirmed by scanning electron microscopy studies. Structural interactions between PPy and GO in the composite coating were studied using ATR-FTIR, solid 13 C NMR and Raman spectroscopy. The higher surface roughness and the lower wettability of the composite-coated Ti favor biocompatibility. The increase in adhesion strength of the composite coating was analyzed by the cross-hatch adhesion test. Potentiodynamic polarization studies showed a higher polarization resistance ( R p ) and lower corrosion rates for composite coatings. Dynamic electrochemical impedance spectroscopy studies confirmed the PPy/GO composite coating exhibited a higher impedance from − 0.55 to 1.25 V in SBF solution. Bode impedance and Bode phase angle results revealed a higher resistance for PPy/GO composite-coated Ti. Immersion studies of PPy/GO composite coating in SBF solution revealed the growth of dense hydroxyapatite (Hap.) over Ti metal. Further, in vitro cell culture studies were carried out by MG-63 cells to assess the biocompatibility of PPy/GO composite coating on the substrate. Improved corrosion protection and biocompatibility behavior of PPy/GO composite-coated Ti suggests the potential candidate for biomedical applications.
doi_str_mv 10.1007/s10853-019-04228-7
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2352072280</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A612933044</galeid><sourcerecordid>A612933044</sourcerecordid><originalsourceid>FETCH-LOGICAL-c448t-88b95b70579b8e60360963e4cb7eb21f5b3b5b6d66e15caf8c5262f9955bea833</originalsourceid><addsrcrecordid>eNp9kVFvFCEQx4nRxLP6BXzaxCcfth1gYVnfmkZtkyYarc8EuNmVZhdW4JLet5fzmuglpuGBGfj9hxn-hLylcE4B-otMQQneAh1a6BhTbf-MbKjoedsp4M_JBoCxlnWSviSvcr4HANEzuiHL1zjv131KccaLKZn1JwZs4oPfYuPissbsyyEyxYepiaG5841f1tmEkj80pllTXHw-3C2mYPJmbsaYGuvjglvvamrWda5B8THk1-TFaOaMbx73M_Lj08e7q-v29svnm6vL29Z1nSqtUnYQtq8tDlahBC5hkBw7Z3u0jI7Ccius3EqJVDgzKieYZOMwCGHRKM7PyLtj3drerx3mou_jLoX6pGZcMOjrF8HTVDfQoQf2T63JzKh9GGNJxtWhnb6UlA2cQ9dV6vw_VF1bXLyLAUdfz08E708ElSn4UCazy1nffP92yrIj61LMOeGo1-QXk_aagj74r4_-6-q__uO_7quIH0W5wmHC9He6J1S_AcUGsQ4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2352072280</pqid></control><display><type>article</type><title>Polypyrrole/graphene oxide composite coating on Ti implants: a promising material for biomedical applications</title><source>SpringerLink Journals - AutoHoldings</source><creator>Rikhari, Bhavana ; Mani, S. Pugal ; Rajendran, N.</creator><creatorcontrib>Rikhari, Bhavana ; Mani, S. Pugal ; Rajendran, N.</creatorcontrib><description>Advanced materials can be developed by the combination of synthetic polymer and nanomaterial for biomedical application. Polypyrrole/graphene oxide (PPy/GO) composite coating on Ti metal was developed through electropolymerization of pyrrole by varying the amount of GO in aqueous oxalic acid solution. The influence of GO in the PPy matrix was confirmed by scanning electron microscopy studies. Structural interactions between PPy and GO in the composite coating were studied using ATR-FTIR, solid 13 C NMR and Raman spectroscopy. The higher surface roughness and the lower wettability of the composite-coated Ti favor biocompatibility. The increase in adhesion strength of the composite coating was analyzed by the cross-hatch adhesion test. Potentiodynamic polarization studies showed a higher polarization resistance ( R p ) and lower corrosion rates for composite coatings. Dynamic electrochemical impedance spectroscopy studies confirmed the PPy/GO composite coating exhibited a higher impedance from − 0.55 to 1.25 V in SBF solution. Bode impedance and Bode phase angle results revealed a higher resistance for PPy/GO composite-coated Ti. Immersion studies of PPy/GO composite coating in SBF solution revealed the growth of dense hydroxyapatite (Hap.) over Ti metal. Further, in vitro cell culture studies were carried out by MG-63 cells to assess the biocompatibility of PPy/GO composite coating on the substrate. Improved corrosion protection and biocompatibility behavior of PPy/GO composite-coated Ti suggests the potential candidate for biomedical applications.</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-019-04228-7</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Adhesion tests ; Adhesive strength ; Biocompatibility ; Biomedical engineering ; Biomedical materials ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Classical Mechanics ; Coatings ; Corrosion and anti-corrosives ; Corrosion prevention ; Corrosion rate ; Corrosion resistance ; Crystallography and Scattering Methods ; Electrochemical impedance spectroscopy ; Graphene ; Hydroxyapatite ; Materials for Life Sciences ; Materials Science ; Nanomaterials ; NMR ; Nuclear magnetic resonance ; Nuclear magnetic resonance spectroscopy ; Oxalates ; Oxalic acid ; Polarization ; Polymer Sciences ; Polymerization ; Polymers ; Polypyrroles ; Protective coatings ; Raman spectroscopy ; Solid Mechanics ; Spectrum analysis ; Submerging ; Substrates ; Surface roughness ; Surgical implants ; Titanium ; Wettability</subject><ispartof>Journal of materials science, 2020-04, Vol.55 (12), p.5211-5229</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>COPYRIGHT 2020 Springer</rights><rights>2020© Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Journal of Materials Science is a copyright of Springer, (2020). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c448t-88b95b70579b8e60360963e4cb7eb21f5b3b5b6d66e15caf8c5262f9955bea833</citedby><cites>FETCH-LOGICAL-c448t-88b95b70579b8e60360963e4cb7eb21f5b3b5b6d66e15caf8c5262f9955bea833</cites><orcidid>0000-0001-6394-1260</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10853-019-04228-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10853-019-04228-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Rikhari, Bhavana</creatorcontrib><creatorcontrib>Mani, S. Pugal</creatorcontrib><creatorcontrib>Rajendran, N.</creatorcontrib><title>Polypyrrole/graphene oxide composite coating on Ti implants: a promising material for biomedical applications</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>Advanced materials can be developed by the combination of synthetic polymer and nanomaterial for biomedical application. Polypyrrole/graphene oxide (PPy/GO) composite coating on Ti metal was developed through electropolymerization of pyrrole by varying the amount of GO in aqueous oxalic acid solution. The influence of GO in the PPy matrix was confirmed by scanning electron microscopy studies. Structural interactions between PPy and GO in the composite coating were studied using ATR-FTIR, solid 13 C NMR and Raman spectroscopy. The higher surface roughness and the lower wettability of the composite-coated Ti favor biocompatibility. The increase in adhesion strength of the composite coating was analyzed by the cross-hatch adhesion test. Potentiodynamic polarization studies showed a higher polarization resistance ( R p ) and lower corrosion rates for composite coatings. Dynamic electrochemical impedance spectroscopy studies confirmed the PPy/GO composite coating exhibited a higher impedance from − 0.55 to 1.25 V in SBF solution. Bode impedance and Bode phase angle results revealed a higher resistance for PPy/GO composite-coated Ti. Immersion studies of PPy/GO composite coating in SBF solution revealed the growth of dense hydroxyapatite (Hap.) over Ti metal. Further, in vitro cell culture studies were carried out by MG-63 cells to assess the biocompatibility of PPy/GO composite coating on the substrate. Improved corrosion protection and biocompatibility behavior of PPy/GO composite-coated Ti suggests the potential candidate for biomedical applications.</description><subject>Adhesion tests</subject><subject>Adhesive strength</subject><subject>Biocompatibility</subject><subject>Biomedical engineering</subject><subject>Biomedical materials</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Coatings</subject><subject>Corrosion and anti-corrosives</subject><subject>Corrosion prevention</subject><subject>Corrosion rate</subject><subject>Corrosion resistance</subject><subject>Crystallography and Scattering Methods</subject><subject>Electrochemical impedance spectroscopy</subject><subject>Graphene</subject><subject>Hydroxyapatite</subject><subject>Materials for Life Sciences</subject><subject>Materials Science</subject><subject>Nanomaterials</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Nuclear magnetic resonance spectroscopy</subject><subject>Oxalates</subject><subject>Oxalic acid</subject><subject>Polarization</subject><subject>Polymer Sciences</subject><subject>Polymerization</subject><subject>Polymers</subject><subject>Polypyrroles</subject><subject>Protective coatings</subject><subject>Raman spectroscopy</subject><subject>Solid Mechanics</subject><subject>Spectrum analysis</subject><subject>Submerging</subject><subject>Substrates</subject><subject>Surface roughness</subject><subject>Surgical implants</subject><subject>Titanium</subject><subject>Wettability</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kVFvFCEQx4nRxLP6BXzaxCcfth1gYVnfmkZtkyYarc8EuNmVZhdW4JLet5fzmuglpuGBGfj9hxn-hLylcE4B-otMQQneAh1a6BhTbf-MbKjoedsp4M_JBoCxlnWSviSvcr4HANEzuiHL1zjv131KccaLKZn1JwZs4oPfYuPissbsyyEyxYepiaG5841f1tmEkj80pllTXHw-3C2mYPJmbsaYGuvjglvvamrWda5B8THk1-TFaOaMbx73M_Lj08e7q-v29svnm6vL29Z1nSqtUnYQtq8tDlahBC5hkBw7Z3u0jI7Ccius3EqJVDgzKieYZOMwCGHRKM7PyLtj3drerx3mou_jLoX6pGZcMOjrF8HTVDfQoQf2T63JzKh9GGNJxtWhnb6UlA2cQ9dV6vw_VF1bXLyLAUdfz08E708ElSn4UCazy1nffP92yrIj61LMOeGo1-QXk_aagj74r4_-6-q__uO_7quIH0W5wmHC9He6J1S_AcUGsQ4</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Rikhari, Bhavana</creator><creator>Mani, S. Pugal</creator><creator>Rajendran, N.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0001-6394-1260</orcidid></search><sort><creationdate>20200401</creationdate><title>Polypyrrole/graphene oxide composite coating on Ti implants: a promising material for biomedical applications</title><author>Rikhari, Bhavana ; Mani, S. Pugal ; Rajendran, N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c448t-88b95b70579b8e60360963e4cb7eb21f5b3b5b6d66e15caf8c5262f9955bea833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adhesion tests</topic><topic>Adhesive strength</topic><topic>Biocompatibility</topic><topic>Biomedical engineering</topic><topic>Biomedical materials</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Coatings</topic><topic>Corrosion and anti-corrosives</topic><topic>Corrosion prevention</topic><topic>Corrosion rate</topic><topic>Corrosion resistance</topic><topic>Crystallography and Scattering Methods</topic><topic>Electrochemical impedance spectroscopy</topic><topic>Graphene</topic><topic>Hydroxyapatite</topic><topic>Materials for Life Sciences</topic><topic>Materials Science</topic><topic>Nanomaterials</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Nuclear magnetic resonance spectroscopy</topic><topic>Oxalates</topic><topic>Oxalic acid</topic><topic>Polarization</topic><topic>Polymer Sciences</topic><topic>Polymerization</topic><topic>Polymers</topic><topic>Polypyrroles</topic><topic>Protective coatings</topic><topic>Raman spectroscopy</topic><topic>Solid Mechanics</topic><topic>Spectrum analysis</topic><topic>Submerging</topic><topic>Substrates</topic><topic>Surface roughness</topic><topic>Surgical implants</topic><topic>Titanium</topic><topic>Wettability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rikhari, Bhavana</creatorcontrib><creatorcontrib>Mani, S. Pugal</creatorcontrib><creatorcontrib>Rajendran, N.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rikhari, Bhavana</au><au>Mani, S. Pugal</au><au>Rajendran, N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Polypyrrole/graphene oxide composite coating on Ti implants: a promising material for biomedical applications</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2020-04-01</date><risdate>2020</risdate><volume>55</volume><issue>12</issue><spage>5211</spage><epage>5229</epage><pages>5211-5229</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>Advanced materials can be developed by the combination of synthetic polymer and nanomaterial for biomedical application. Polypyrrole/graphene oxide (PPy/GO) composite coating on Ti metal was developed through electropolymerization of pyrrole by varying the amount of GO in aqueous oxalic acid solution. The influence of GO in the PPy matrix was confirmed by scanning electron microscopy studies. Structural interactions between PPy and GO in the composite coating were studied using ATR-FTIR, solid 13 C NMR and Raman spectroscopy. The higher surface roughness and the lower wettability of the composite-coated Ti favor biocompatibility. The increase in adhesion strength of the composite coating was analyzed by the cross-hatch adhesion test. Potentiodynamic polarization studies showed a higher polarization resistance ( R p ) and lower corrosion rates for composite coatings. Dynamic electrochemical impedance spectroscopy studies confirmed the PPy/GO composite coating exhibited a higher impedance from − 0.55 to 1.25 V in SBF solution. Bode impedance and Bode phase angle results revealed a higher resistance for PPy/GO composite-coated Ti. Immersion studies of PPy/GO composite coating in SBF solution revealed the growth of dense hydroxyapatite (Hap.) over Ti metal. Further, in vitro cell culture studies were carried out by MG-63 cells to assess the biocompatibility of PPy/GO composite coating on the substrate. Improved corrosion protection and biocompatibility behavior of PPy/GO composite-coated Ti suggests the potential candidate for biomedical applications.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10853-019-04228-7</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0001-6394-1260</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-2461
ispartof Journal of materials science, 2020-04, Vol.55 (12), p.5211-5229
issn 0022-2461
1573-4803
language eng
recordid cdi_proquest_journals_2352072280
source SpringerLink Journals - AutoHoldings
subjects Adhesion tests
Adhesive strength
Biocompatibility
Biomedical engineering
Biomedical materials
Characterization and Evaluation of Materials
Chemistry and Materials Science
Classical Mechanics
Coatings
Corrosion and anti-corrosives
Corrosion prevention
Corrosion rate
Corrosion resistance
Crystallography and Scattering Methods
Electrochemical impedance spectroscopy
Graphene
Hydroxyapatite
Materials for Life Sciences
Materials Science
Nanomaterials
NMR
Nuclear magnetic resonance
Nuclear magnetic resonance spectroscopy
Oxalates
Oxalic acid
Polarization
Polymer Sciences
Polymerization
Polymers
Polypyrroles
Protective coatings
Raman spectroscopy
Solid Mechanics
Spectrum analysis
Submerging
Substrates
Surface roughness
Surgical implants
Titanium
Wettability
title Polypyrrole/graphene oxide composite coating on Ti implants: a promising material for biomedical applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T05%3A22%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Polypyrrole/graphene%20oxide%20composite%20coating%20on%20Ti%20implants:%20a%20promising%20material%20for%20biomedical%20applications&rft.jtitle=Journal%20of%20materials%20science&rft.au=Rikhari,%20Bhavana&rft.date=2020-04-01&rft.volume=55&rft.issue=12&rft.spage=5211&rft.epage=5229&rft.pages=5211-5229&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-019-04228-7&rft_dat=%3Cgale_proqu%3EA612933044%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2352072280&rft_id=info:pmid/&rft_galeid=A612933044&rfr_iscdi=true