Efficient high-order spectral element discretizations for building block operators of CFD
•Efficient implementation of tensor-product operators for high-order spectralelement methods.•Exploitation of parametrization, tailored unroll-jam and blocking of loops.•50% of the peak performance attained over a wide range of polynomial degrees.•Benefit of new operator implementation demonstrated...
Gespeichert in:
Veröffentlicht in: | Computers & fluids 2020-01, Vol.197, p.104386, Article 104386 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 104386 |
container_title | Computers & fluids |
container_volume | 197 |
creator | Huismann, Immo Stiller, Jörg Fröhlich, Jochen |
description | •Efficient implementation of tensor-product operators for high-order spectralelement methods.•Exploitation of parametrization, tailored unroll-jam and blocking of loops.•50% of the peak performance attained over a wide range of polynomial degrees.•Benefit of new operator implementation demonstrated on combustion problem with 1: 72 · 109 mesh points.
High-order methods gain more and more attention in computational fluid dynamics. Among these, spectral element methods and discontinuous Galerkin methods introduce element-wise approximations by means of a polynomial basis. This leads to a small number of operators consuming a large portion of the runtime of CFD applications. The present paper addresses tensor-product bases which are among the most frequent in these applications. Various implementations are developed and performance tests conducted for the interpolation operator, the Helmholtz operator, and the fast diagonalization operator. For each, up to 50% of the peak performance is attained, beating matrix-matrix multiplication for every polynomial degree relevant for simulations. This extremely high efficiency of the method developed is then demonstrated on a combustion problem with 1.72 · 109 mesh points. |
doi_str_mv | 10.1016/j.compfluid.2019.104386 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2352068145</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045793019303445</els_id><sourcerecordid>2352068145</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-38cad402f4152324ee88d81a22c475c82fe32531ae7028bd32b462f88f146c753</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRS0EEqXwDVhineJXEndZlRaQkNjAgpXl2OPWIa2DnSDB15MoiC2r0czcO4-D0DUlC0pocVsvTDi0rum9XTBCl0NVcFmcoBmV5TIjpShP0YwQkWflkpNzdJFSTYacMzFDbxvnvPFw7PDe7_ZZiBYiTi2YLuoGQwOHsWd9MhE6_607H44JuxBx1fvG-uMOV00w7zi0EHUXYsLB4fX27hKdOd0kuPqNc_S63bysH7Kn5_vH9eopM1zwLuPSaCsIc4LmbDgJQEorqWbMiDI3kjngLOdUQ0mYrCxnlSiYk9JRUZgy53N0M81tY_joIXWqDn08DisV4zkjhaRiVJWTysSQUgSn2ugPOn4pStTIUdXqj6MaOaqJ4-BcTU4Ynvj0EFUaeRmwPg6UlA3-3xk_IHuACA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2352068145</pqid></control><display><type>article</type><title>Efficient high-order spectral element discretizations for building block operators of CFD</title><source>Elsevier ScienceDirect Journals</source><creator>Huismann, Immo ; Stiller, Jörg ; Fröhlich, Jochen</creator><creatorcontrib>Huismann, Immo ; Stiller, Jörg ; Fröhlich, Jochen</creatorcontrib><description>•Efficient implementation of tensor-product operators for high-order spectralelement methods.•Exploitation of parametrization, tailored unroll-jam and blocking of loops.•50% of the peak performance attained over a wide range of polynomial degrees.•Benefit of new operator implementation demonstrated on combustion problem with 1: 72 · 109 mesh points.
High-order methods gain more and more attention in computational fluid dynamics. Among these, spectral element methods and discontinuous Galerkin methods introduce element-wise approximations by means of a polynomial basis. This leads to a small number of operators consuming a large portion of the runtime of CFD applications. The present paper addresses tensor-product bases which are among the most frequent in these applications. Various implementations are developed and performance tests conducted for the interpolation operator, the Helmholtz operator, and the fast diagonalization operator. For each, up to 50% of the peak performance is attained, beating matrix-matrix multiplication for every polynomial degree relevant for simulations. This extremely high efficiency of the method developed is then demonstrated on a combustion problem with 1.72 · 109 mesh points.</description><identifier>ISSN: 0045-7930</identifier><identifier>EISSN: 1879-0747</identifier><identifier>DOI: 10.1016/j.compfluid.2019.104386</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ltd</publisher><subject>Approximation ; Computational fluid dynamics ; Computer simulation ; Discretization ; Finite element method ; Galerkin method ; Interpolation ; Multiplication ; Operators ; Performance tests ; Polynomials ; Tensors</subject><ispartof>Computers & fluids, 2020-01, Vol.197, p.104386, Article 104386</ispartof><rights>2019</rights><rights>Copyright Elsevier BV Jan 30, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-38cad402f4152324ee88d81a22c475c82fe32531ae7028bd32b462f88f146c753</citedby><cites>FETCH-LOGICAL-c343t-38cad402f4152324ee88d81a22c475c82fe32531ae7028bd32b462f88f146c753</cites><orcidid>0000-0002-6485-3825</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0045793019303445$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Huismann, Immo</creatorcontrib><creatorcontrib>Stiller, Jörg</creatorcontrib><creatorcontrib>Fröhlich, Jochen</creatorcontrib><title>Efficient high-order spectral element discretizations for building block operators of CFD</title><title>Computers & fluids</title><description>•Efficient implementation of tensor-product operators for high-order spectralelement methods.•Exploitation of parametrization, tailored unroll-jam and blocking of loops.•50% of the peak performance attained over a wide range of polynomial degrees.•Benefit of new operator implementation demonstrated on combustion problem with 1: 72 · 109 mesh points.
High-order methods gain more and more attention in computational fluid dynamics. Among these, spectral element methods and discontinuous Galerkin methods introduce element-wise approximations by means of a polynomial basis. This leads to a small number of operators consuming a large portion of the runtime of CFD applications. The present paper addresses tensor-product bases which are among the most frequent in these applications. Various implementations are developed and performance tests conducted for the interpolation operator, the Helmholtz operator, and the fast diagonalization operator. For each, up to 50% of the peak performance is attained, beating matrix-matrix multiplication for every polynomial degree relevant for simulations. This extremely high efficiency of the method developed is then demonstrated on a combustion problem with 1.72 · 109 mesh points.</description><subject>Approximation</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Discretization</subject><subject>Finite element method</subject><subject>Galerkin method</subject><subject>Interpolation</subject><subject>Multiplication</subject><subject>Operators</subject><subject>Performance tests</subject><subject>Polynomials</subject><subject>Tensors</subject><issn>0045-7930</issn><issn>1879-0747</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkMtOwzAQRS0EEqXwDVhineJXEndZlRaQkNjAgpXl2OPWIa2DnSDB15MoiC2r0czcO4-D0DUlC0pocVsvTDi0rum9XTBCl0NVcFmcoBmV5TIjpShP0YwQkWflkpNzdJFSTYacMzFDbxvnvPFw7PDe7_ZZiBYiTi2YLuoGQwOHsWd9MhE6_607H44JuxBx1fvG-uMOV00w7zi0EHUXYsLB4fX27hKdOd0kuPqNc_S63bysH7Kn5_vH9eopM1zwLuPSaCsIc4LmbDgJQEorqWbMiDI3kjngLOdUQ0mYrCxnlSiYk9JRUZgy53N0M81tY_joIXWqDn08DisV4zkjhaRiVJWTysSQUgSn2ugPOn4pStTIUdXqj6MaOaqJ4-BcTU4Ynvj0EFUaeRmwPg6UlA3-3xk_IHuACA</recordid><startdate>20200130</startdate><enddate>20200130</enddate><creator>Huismann, Immo</creator><creator>Stiller, Jörg</creator><creator>Fröhlich, Jochen</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-6485-3825</orcidid></search><sort><creationdate>20200130</creationdate><title>Efficient high-order spectral element discretizations for building block operators of CFD</title><author>Huismann, Immo ; Stiller, Jörg ; Fröhlich, Jochen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-38cad402f4152324ee88d81a22c475c82fe32531ae7028bd32b462f88f146c753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Approximation</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Discretization</topic><topic>Finite element method</topic><topic>Galerkin method</topic><topic>Interpolation</topic><topic>Multiplication</topic><topic>Operators</topic><topic>Performance tests</topic><topic>Polynomials</topic><topic>Tensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huismann, Immo</creatorcontrib><creatorcontrib>Stiller, Jörg</creatorcontrib><creatorcontrib>Fröhlich, Jochen</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers & fluids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huismann, Immo</au><au>Stiller, Jörg</au><au>Fröhlich, Jochen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient high-order spectral element discretizations for building block operators of CFD</atitle><jtitle>Computers & fluids</jtitle><date>2020-01-30</date><risdate>2020</risdate><volume>197</volume><spage>104386</spage><pages>104386-</pages><artnum>104386</artnum><issn>0045-7930</issn><eissn>1879-0747</eissn><abstract>•Efficient implementation of tensor-product operators for high-order spectralelement methods.•Exploitation of parametrization, tailored unroll-jam and blocking of loops.•50% of the peak performance attained over a wide range of polynomial degrees.•Benefit of new operator implementation demonstrated on combustion problem with 1: 72 · 109 mesh points.
High-order methods gain more and more attention in computational fluid dynamics. Among these, spectral element methods and discontinuous Galerkin methods introduce element-wise approximations by means of a polynomial basis. This leads to a small number of operators consuming a large portion of the runtime of CFD applications. The present paper addresses tensor-product bases which are among the most frequent in these applications. Various implementations are developed and performance tests conducted for the interpolation operator, the Helmholtz operator, and the fast diagonalization operator. For each, up to 50% of the peak performance is attained, beating matrix-matrix multiplication for every polynomial degree relevant for simulations. This extremely high efficiency of the method developed is then demonstrated on a combustion problem with 1.72 · 109 mesh points.</abstract><cop>Amsterdam</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.compfluid.2019.104386</doi><orcidid>https://orcid.org/0000-0002-6485-3825</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0045-7930 |
ispartof | Computers & fluids, 2020-01, Vol.197, p.104386, Article 104386 |
issn | 0045-7930 1879-0747 |
language | eng |
recordid | cdi_proquest_journals_2352068145 |
source | Elsevier ScienceDirect Journals |
subjects | Approximation Computational fluid dynamics Computer simulation Discretization Finite element method Galerkin method Interpolation Multiplication Operators Performance tests Polynomials Tensors |
title | Efficient high-order spectral element discretizations for building block operators of CFD |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T01%3A10%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20high-order%20spectral%20element%20discretizations%20for%20building%20block%20operators%20of%20CFD&rft.jtitle=Computers%20&%20fluids&rft.au=Huismann,%20Immo&rft.date=2020-01-30&rft.volume=197&rft.spage=104386&rft.pages=104386-&rft.artnum=104386&rft.issn=0045-7930&rft.eissn=1879-0747&rft_id=info:doi/10.1016/j.compfluid.2019.104386&rft_dat=%3Cproquest_cross%3E2352068145%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2352068145&rft_id=info:pmid/&rft_els_id=S0045793019303445&rfr_iscdi=true |