Efficient high-order spectral element discretizations for building block operators of CFD

•Efficient implementation of tensor-product operators for high-order spectralelement methods.•Exploitation of parametrization, tailored unroll-jam and blocking of loops.•50% of the peak performance attained over a wide range of polynomial degrees.•Benefit of new operator implementation demonstrated...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & fluids 2020-01, Vol.197, p.104386, Article 104386
Hauptverfasser: Huismann, Immo, Stiller, Jörg, Fröhlich, Jochen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 104386
container_title Computers & fluids
container_volume 197
creator Huismann, Immo
Stiller, Jörg
Fröhlich, Jochen
description •Efficient implementation of tensor-product operators for high-order spectralelement methods.•Exploitation of parametrization, tailored unroll-jam and blocking of loops.•50% of the peak performance attained over a wide range of polynomial degrees.•Benefit of new operator implementation demonstrated on combustion problem with 1: 72 · 109 mesh points. High-order methods gain more and more attention in computational fluid dynamics. Among these, spectral element methods and discontinuous Galerkin methods introduce element-wise approximations by means of a polynomial basis. This leads to a small number of operators consuming a large portion of the runtime of CFD applications. The present paper addresses tensor-product bases which are among the most frequent in these applications. Various implementations are developed and performance tests conducted for the interpolation operator, the Helmholtz operator, and the fast diagonalization operator. For each, up to 50% of the peak performance is attained, beating matrix-matrix multiplication for every polynomial degree relevant for simulations. This extremely high efficiency of the method developed is then demonstrated on a combustion problem with 1.72 · 109 mesh points.
doi_str_mv 10.1016/j.compfluid.2019.104386
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2352068145</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045793019303445</els_id><sourcerecordid>2352068145</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-38cad402f4152324ee88d81a22c475c82fe32531ae7028bd32b462f88f146c753</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRS0EEqXwDVhineJXEndZlRaQkNjAgpXl2OPWIa2DnSDB15MoiC2r0czcO4-D0DUlC0pocVsvTDi0rum9XTBCl0NVcFmcoBmV5TIjpShP0YwQkWflkpNzdJFSTYacMzFDbxvnvPFw7PDe7_ZZiBYiTi2YLuoGQwOHsWd9MhE6_607H44JuxBx1fvG-uMOV00w7zi0EHUXYsLB4fX27hKdOd0kuPqNc_S63bysH7Kn5_vH9eopM1zwLuPSaCsIc4LmbDgJQEorqWbMiDI3kjngLOdUQ0mYrCxnlSiYk9JRUZgy53N0M81tY_joIXWqDn08DisV4zkjhaRiVJWTysSQUgSn2ugPOn4pStTIUdXqj6MaOaqJ4-BcTU4Ynvj0EFUaeRmwPg6UlA3-3xk_IHuACA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2352068145</pqid></control><display><type>article</type><title>Efficient high-order spectral element discretizations for building block operators of CFD</title><source>Elsevier ScienceDirect Journals</source><creator>Huismann, Immo ; Stiller, Jörg ; Fröhlich, Jochen</creator><creatorcontrib>Huismann, Immo ; Stiller, Jörg ; Fröhlich, Jochen</creatorcontrib><description>•Efficient implementation of tensor-product operators for high-order spectralelement methods.•Exploitation of parametrization, tailored unroll-jam and blocking of loops.•50% of the peak performance attained over a wide range of polynomial degrees.•Benefit of new operator implementation demonstrated on combustion problem with 1: 72 · 109 mesh points. High-order methods gain more and more attention in computational fluid dynamics. Among these, spectral element methods and discontinuous Galerkin methods introduce element-wise approximations by means of a polynomial basis. This leads to a small number of operators consuming a large portion of the runtime of CFD applications. The present paper addresses tensor-product bases which are among the most frequent in these applications. Various implementations are developed and performance tests conducted for the interpolation operator, the Helmholtz operator, and the fast diagonalization operator. For each, up to 50% of the peak performance is attained, beating matrix-matrix multiplication for every polynomial degree relevant for simulations. This extremely high efficiency of the method developed is then demonstrated on a combustion problem with 1.72 · 109 mesh points.</description><identifier>ISSN: 0045-7930</identifier><identifier>EISSN: 1879-0747</identifier><identifier>DOI: 10.1016/j.compfluid.2019.104386</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ltd</publisher><subject>Approximation ; Computational fluid dynamics ; Computer simulation ; Discretization ; Finite element method ; Galerkin method ; Interpolation ; Multiplication ; Operators ; Performance tests ; Polynomials ; Tensors</subject><ispartof>Computers &amp; fluids, 2020-01, Vol.197, p.104386, Article 104386</ispartof><rights>2019</rights><rights>Copyright Elsevier BV Jan 30, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-38cad402f4152324ee88d81a22c475c82fe32531ae7028bd32b462f88f146c753</citedby><cites>FETCH-LOGICAL-c343t-38cad402f4152324ee88d81a22c475c82fe32531ae7028bd32b462f88f146c753</cites><orcidid>0000-0002-6485-3825</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0045793019303445$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Huismann, Immo</creatorcontrib><creatorcontrib>Stiller, Jörg</creatorcontrib><creatorcontrib>Fröhlich, Jochen</creatorcontrib><title>Efficient high-order spectral element discretizations for building block operators of CFD</title><title>Computers &amp; fluids</title><description>•Efficient implementation of tensor-product operators for high-order spectralelement methods.•Exploitation of parametrization, tailored unroll-jam and blocking of loops.•50% of the peak performance attained over a wide range of polynomial degrees.•Benefit of new operator implementation demonstrated on combustion problem with 1: 72 · 109 mesh points. High-order methods gain more and more attention in computational fluid dynamics. Among these, spectral element methods and discontinuous Galerkin methods introduce element-wise approximations by means of a polynomial basis. This leads to a small number of operators consuming a large portion of the runtime of CFD applications. The present paper addresses tensor-product bases which are among the most frequent in these applications. Various implementations are developed and performance tests conducted for the interpolation operator, the Helmholtz operator, and the fast diagonalization operator. For each, up to 50% of the peak performance is attained, beating matrix-matrix multiplication for every polynomial degree relevant for simulations. This extremely high efficiency of the method developed is then demonstrated on a combustion problem with 1.72 · 109 mesh points.</description><subject>Approximation</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Discretization</subject><subject>Finite element method</subject><subject>Galerkin method</subject><subject>Interpolation</subject><subject>Multiplication</subject><subject>Operators</subject><subject>Performance tests</subject><subject>Polynomials</subject><subject>Tensors</subject><issn>0045-7930</issn><issn>1879-0747</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkMtOwzAQRS0EEqXwDVhineJXEndZlRaQkNjAgpXl2OPWIa2DnSDB15MoiC2r0czcO4-D0DUlC0pocVsvTDi0rum9XTBCl0NVcFmcoBmV5TIjpShP0YwQkWflkpNzdJFSTYacMzFDbxvnvPFw7PDe7_ZZiBYiTi2YLuoGQwOHsWd9MhE6_607H44JuxBx1fvG-uMOV00w7zi0EHUXYsLB4fX27hKdOd0kuPqNc_S63bysH7Kn5_vH9eopM1zwLuPSaCsIc4LmbDgJQEorqWbMiDI3kjngLOdUQ0mYrCxnlSiYk9JRUZgy53N0M81tY_joIXWqDn08DisV4zkjhaRiVJWTysSQUgSn2ugPOn4pStTIUdXqj6MaOaqJ4-BcTU4Ynvj0EFUaeRmwPg6UlA3-3xk_IHuACA</recordid><startdate>20200130</startdate><enddate>20200130</enddate><creator>Huismann, Immo</creator><creator>Stiller, Jörg</creator><creator>Fröhlich, Jochen</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-6485-3825</orcidid></search><sort><creationdate>20200130</creationdate><title>Efficient high-order spectral element discretizations for building block operators of CFD</title><author>Huismann, Immo ; Stiller, Jörg ; Fröhlich, Jochen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-38cad402f4152324ee88d81a22c475c82fe32531ae7028bd32b462f88f146c753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Approximation</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Discretization</topic><topic>Finite element method</topic><topic>Galerkin method</topic><topic>Interpolation</topic><topic>Multiplication</topic><topic>Operators</topic><topic>Performance tests</topic><topic>Polynomials</topic><topic>Tensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huismann, Immo</creatorcontrib><creatorcontrib>Stiller, Jörg</creatorcontrib><creatorcontrib>Fröhlich, Jochen</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers &amp; fluids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huismann, Immo</au><au>Stiller, Jörg</au><au>Fröhlich, Jochen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient high-order spectral element discretizations for building block operators of CFD</atitle><jtitle>Computers &amp; fluids</jtitle><date>2020-01-30</date><risdate>2020</risdate><volume>197</volume><spage>104386</spage><pages>104386-</pages><artnum>104386</artnum><issn>0045-7930</issn><eissn>1879-0747</eissn><abstract>•Efficient implementation of tensor-product operators for high-order spectralelement methods.•Exploitation of parametrization, tailored unroll-jam and blocking of loops.•50% of the peak performance attained over a wide range of polynomial degrees.•Benefit of new operator implementation demonstrated on combustion problem with 1: 72 · 109 mesh points. High-order methods gain more and more attention in computational fluid dynamics. Among these, spectral element methods and discontinuous Galerkin methods introduce element-wise approximations by means of a polynomial basis. This leads to a small number of operators consuming a large portion of the runtime of CFD applications. The present paper addresses tensor-product bases which are among the most frequent in these applications. Various implementations are developed and performance tests conducted for the interpolation operator, the Helmholtz operator, and the fast diagonalization operator. For each, up to 50% of the peak performance is attained, beating matrix-matrix multiplication for every polynomial degree relevant for simulations. This extremely high efficiency of the method developed is then demonstrated on a combustion problem with 1.72 · 109 mesh points.</abstract><cop>Amsterdam</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.compfluid.2019.104386</doi><orcidid>https://orcid.org/0000-0002-6485-3825</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0045-7930
ispartof Computers & fluids, 2020-01, Vol.197, p.104386, Article 104386
issn 0045-7930
1879-0747
language eng
recordid cdi_proquest_journals_2352068145
source Elsevier ScienceDirect Journals
subjects Approximation
Computational fluid dynamics
Computer simulation
Discretization
Finite element method
Galerkin method
Interpolation
Multiplication
Operators
Performance tests
Polynomials
Tensors
title Efficient high-order spectral element discretizations for building block operators of CFD
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T01%3A10%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20high-order%20spectral%20element%20discretizations%20for%20building%20block%20operators%20of%20CFD&rft.jtitle=Computers%20&%20fluids&rft.au=Huismann,%20Immo&rft.date=2020-01-30&rft.volume=197&rft.spage=104386&rft.pages=104386-&rft.artnum=104386&rft.issn=0045-7930&rft.eissn=1879-0747&rft_id=info:doi/10.1016/j.compfluid.2019.104386&rft_dat=%3Cproquest_cross%3E2352068145%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2352068145&rft_id=info:pmid/&rft_els_id=S0045793019303445&rfr_iscdi=true