F(1H‐Pyrazol‐4‐yl)methylene‐Hydrazide derivatives: Synthesis and antimicrobial activity
This paper investigates the seismic and collapse performance of shape memory alloy (SMA) braced steel frame structures considering the effects of various brace design parameters and ultimate state of SMAs. An SMA braced steel frame building is designed to have comparable strength and stiffness with...
Gespeichert in:
Veröffentlicht in: | Journal of heterocyclic chemistry 2020-02, Vol.57 (2), p.751-760 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 760 |
---|---|
container_issue | 2 |
container_start_page | 751 |
container_title | Journal of heterocyclic chemistry |
container_volume | 57 |
creator | Bhavanarushi, Sangepu Luo, Zhi‐Bin Bharath, Gandu Rani, JettiVatsala Khan, Imran Xu, Yin Liu, Bin Xie, Jimin |
description | This paper investigates the seismic and collapse performance of shape memory alloy (SMA) braced steel frame structures considering the effects of various brace design parameters and ultimate state of SMAs. An SMA braced steel frame building is designed to have comparable strength and stiffness with a steel‐moment resisting frame selected as case study building. Then, the stiffness and ultimate deformation capacity of the SMA braces in the initially designed reference SMA braced frame are systematically varied. First, the static pushover analysis and incremental dynamic analysis (IDA) are employed to illustrate the significance of SMA brace failure consideration in seismic performance assessment of steel frames with SMA elements. Then, the influence of SMA brace initial stiffness and ultimate deformation capacity on the seismic and collapse performance of SMA braced frames are studied through pushover analyses, nonlinear response history analyses, and IDA. The results show that the SMA brace initial stiffness does not affect the interstory drift and floor absolute acceleration response at design and maximum considered earthquake (MCE) level seismic hazard or collapse capacity of the frame. However, it has considerable influence on post‐event functionality of the frame. It is also found that the SMA brace ultimate deformation capacity should be at least 80% of maximum inter‐story drift demand at MCE level for satisfactory seismic performance, while larger values provide higher collapse capacity for the SMA braced frame. |
doi_str_mv | 10.1002/jhet.3816 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2352031405</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2352031405</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2976-1792e9a734b35841ee2dd6982fde15fc313c7409ca6ff288b829c77099a67c783</originalsourceid><addsrcrecordid>eNp1kM1Kw0AQxxdRsFYPvkHAiz2k3Y8km_UmpTVKQcEK3pbtZkK3pEndTSvryUfwGX0St9arh2Hmz_zmgz9ClwQPCcZ0tFpCN2Q5yY5Qj4iExSkR7Bj1Qo_GJKWvp-jMuVWQhHHeQ3J6TYrvz68nb9VHW4cqCeHrwRq6pa-hgSALX4auKSEqwZqd6swO3E307JtuCc64SDVliM6sjbbtwqg6UjpApvPn6KRStYOLv9xHL9PJfFzEs8e7-_HtLNZU8CwmXFAQirNkwdI8IQC0LDOR06oEklaaEaZ5goVWWVXRPF_kVGjOsRAq45rnrI-uDns3tn3bguvkqt3aJpyUlKUUM5LgNFCDAxXedM5CJTfWrJX1kmC590_u_ZN7_wI7OrDvpgb_Pygfisn8d-IHCT92cA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2352031405</pqid></control><display><type>article</type><title>F(1H‐Pyrazol‐4‐yl)methylene‐Hydrazide derivatives: Synthesis and antimicrobial activity</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Bhavanarushi, Sangepu ; Luo, Zhi‐Bin ; Bharath, Gandu ; Rani, JettiVatsala ; Khan, Imran ; Xu, Yin ; Liu, Bin ; Xie, Jimin</creator><creatorcontrib>Bhavanarushi, Sangepu ; Luo, Zhi‐Bin ; Bharath, Gandu ; Rani, JettiVatsala ; Khan, Imran ; Xu, Yin ; Liu, Bin ; Xie, Jimin</creatorcontrib><description>This paper investigates the seismic and collapse performance of shape memory alloy (SMA) braced steel frame structures considering the effects of various brace design parameters and ultimate state of SMAs. An SMA braced steel frame building is designed to have comparable strength and stiffness with a steel‐moment resisting frame selected as case study building. Then, the stiffness and ultimate deformation capacity of the SMA braces in the initially designed reference SMA braced frame are systematically varied. First, the static pushover analysis and incremental dynamic analysis (IDA) are employed to illustrate the significance of SMA brace failure consideration in seismic performance assessment of steel frames with SMA elements. Then, the influence of SMA brace initial stiffness and ultimate deformation capacity on the seismic and collapse performance of SMA braced frames are studied through pushover analyses, nonlinear response history analyses, and IDA. The results show that the SMA brace initial stiffness does not affect the interstory drift and floor absolute acceleration response at design and maximum considered earthquake (MCE) level seismic hazard or collapse capacity of the frame. However, it has considerable influence on post‐event functionality of the frame. It is also found that the SMA brace ultimate deformation capacity should be at least 80% of maximum inter‐story drift demand at MCE level for satisfactory seismic performance, while larger values provide higher collapse capacity for the SMA braced frame.</description><identifier>ISSN: 0022-152X</identifier><identifier>EISSN: 1943-5193</identifier><identifier>DOI: 10.1002/jhet.3816</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Acceleration ; Collapse ; Deformation ; Design ; Design parameters ; Drift ; Frame structures ; Nonlinear analysis ; Nonlinear response ; Performance assessment ; Reinforcement (structures) ; Seismic analysis ; Seismic hazard ; Seismic response ; Shape memory alloys ; Steel frames ; Steel structures ; Stiffness</subject><ispartof>Journal of heterocyclic chemistry, 2020-02, Vol.57 (2), p.751-760</ispartof><rights>2019 Wiley Periodicals, Inc.</rights><rights>2020 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2976-1792e9a734b35841ee2dd6982fde15fc313c7409ca6ff288b829c77099a67c783</citedby><cites>FETCH-LOGICAL-c2976-1792e9a734b35841ee2dd6982fde15fc313c7409ca6ff288b829c77099a67c783</cites><orcidid>0000-0003-2105-5150</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjhet.3816$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjhet.3816$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Bhavanarushi, Sangepu</creatorcontrib><creatorcontrib>Luo, Zhi‐Bin</creatorcontrib><creatorcontrib>Bharath, Gandu</creatorcontrib><creatorcontrib>Rani, JettiVatsala</creatorcontrib><creatorcontrib>Khan, Imran</creatorcontrib><creatorcontrib>Xu, Yin</creatorcontrib><creatorcontrib>Liu, Bin</creatorcontrib><creatorcontrib>Xie, Jimin</creatorcontrib><title>F(1H‐Pyrazol‐4‐yl)methylene‐Hydrazide derivatives: Synthesis and antimicrobial activity</title><title>Journal of heterocyclic chemistry</title><description>This paper investigates the seismic and collapse performance of shape memory alloy (SMA) braced steel frame structures considering the effects of various brace design parameters and ultimate state of SMAs. An SMA braced steel frame building is designed to have comparable strength and stiffness with a steel‐moment resisting frame selected as case study building. Then, the stiffness and ultimate deformation capacity of the SMA braces in the initially designed reference SMA braced frame are systematically varied. First, the static pushover analysis and incremental dynamic analysis (IDA) are employed to illustrate the significance of SMA brace failure consideration in seismic performance assessment of steel frames with SMA elements. Then, the influence of SMA brace initial stiffness and ultimate deformation capacity on the seismic and collapse performance of SMA braced frames are studied through pushover analyses, nonlinear response history analyses, and IDA. The results show that the SMA brace initial stiffness does not affect the interstory drift and floor absolute acceleration response at design and maximum considered earthquake (MCE) level seismic hazard or collapse capacity of the frame. However, it has considerable influence on post‐event functionality of the frame. It is also found that the SMA brace ultimate deformation capacity should be at least 80% of maximum inter‐story drift demand at MCE level for satisfactory seismic performance, while larger values provide higher collapse capacity for the SMA braced frame.</description><subject>Acceleration</subject><subject>Collapse</subject><subject>Deformation</subject><subject>Design</subject><subject>Design parameters</subject><subject>Drift</subject><subject>Frame structures</subject><subject>Nonlinear analysis</subject><subject>Nonlinear response</subject><subject>Performance assessment</subject><subject>Reinforcement (structures)</subject><subject>Seismic analysis</subject><subject>Seismic hazard</subject><subject>Seismic response</subject><subject>Shape memory alloys</subject><subject>Steel frames</subject><subject>Steel structures</subject><subject>Stiffness</subject><issn>0022-152X</issn><issn>1943-5193</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kM1Kw0AQxxdRsFYPvkHAiz2k3Y8km_UmpTVKQcEK3pbtZkK3pEndTSvryUfwGX0St9arh2Hmz_zmgz9ClwQPCcZ0tFpCN2Q5yY5Qj4iExSkR7Bj1Qo_GJKWvp-jMuVWQhHHeQ3J6TYrvz68nb9VHW4cqCeHrwRq6pa-hgSALX4auKSEqwZqd6swO3E307JtuCc64SDVliM6sjbbtwqg6UjpApvPn6KRStYOLv9xHL9PJfFzEs8e7-_HtLNZU8CwmXFAQirNkwdI8IQC0LDOR06oEklaaEaZ5goVWWVXRPF_kVGjOsRAq45rnrI-uDns3tn3bguvkqt3aJpyUlKUUM5LgNFCDAxXedM5CJTfWrJX1kmC590_u_ZN7_wI7OrDvpgb_Pygfisn8d-IHCT92cA</recordid><startdate>202002</startdate><enddate>202002</enddate><creator>Bhavanarushi, Sangepu</creator><creator>Luo, Zhi‐Bin</creator><creator>Bharath, Gandu</creator><creator>Rani, JettiVatsala</creator><creator>Khan, Imran</creator><creator>Xu, Yin</creator><creator>Liu, Bin</creator><creator>Xie, Jimin</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-2105-5150</orcidid></search><sort><creationdate>202002</creationdate><title>F(1H‐Pyrazol‐4‐yl)methylene‐Hydrazide derivatives: Synthesis and antimicrobial activity</title><author>Bhavanarushi, Sangepu ; Luo, Zhi‐Bin ; Bharath, Gandu ; Rani, JettiVatsala ; Khan, Imran ; Xu, Yin ; Liu, Bin ; Xie, Jimin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2976-1792e9a734b35841ee2dd6982fde15fc313c7409ca6ff288b829c77099a67c783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Acceleration</topic><topic>Collapse</topic><topic>Deformation</topic><topic>Design</topic><topic>Design parameters</topic><topic>Drift</topic><topic>Frame structures</topic><topic>Nonlinear analysis</topic><topic>Nonlinear response</topic><topic>Performance assessment</topic><topic>Reinforcement (structures)</topic><topic>Seismic analysis</topic><topic>Seismic hazard</topic><topic>Seismic response</topic><topic>Shape memory alloys</topic><topic>Steel frames</topic><topic>Steel structures</topic><topic>Stiffness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bhavanarushi, Sangepu</creatorcontrib><creatorcontrib>Luo, Zhi‐Bin</creatorcontrib><creatorcontrib>Bharath, Gandu</creatorcontrib><creatorcontrib>Rani, JettiVatsala</creatorcontrib><creatorcontrib>Khan, Imran</creatorcontrib><creatorcontrib>Xu, Yin</creatorcontrib><creatorcontrib>Liu, Bin</creatorcontrib><creatorcontrib>Xie, Jimin</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of heterocyclic chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bhavanarushi, Sangepu</au><au>Luo, Zhi‐Bin</au><au>Bharath, Gandu</au><au>Rani, JettiVatsala</au><au>Khan, Imran</au><au>Xu, Yin</au><au>Liu, Bin</au><au>Xie, Jimin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>F(1H‐Pyrazol‐4‐yl)methylene‐Hydrazide derivatives: Synthesis and antimicrobial activity</atitle><jtitle>Journal of heterocyclic chemistry</jtitle><date>2020-02</date><risdate>2020</risdate><volume>57</volume><issue>2</issue><spage>751</spage><epage>760</epage><pages>751-760</pages><issn>0022-152X</issn><eissn>1943-5193</eissn><abstract>This paper investigates the seismic and collapse performance of shape memory alloy (SMA) braced steel frame structures considering the effects of various brace design parameters and ultimate state of SMAs. An SMA braced steel frame building is designed to have comparable strength and stiffness with a steel‐moment resisting frame selected as case study building. Then, the stiffness and ultimate deformation capacity of the SMA braces in the initially designed reference SMA braced frame are systematically varied. First, the static pushover analysis and incremental dynamic analysis (IDA) are employed to illustrate the significance of SMA brace failure consideration in seismic performance assessment of steel frames with SMA elements. Then, the influence of SMA brace initial stiffness and ultimate deformation capacity on the seismic and collapse performance of SMA braced frames are studied through pushover analyses, nonlinear response history analyses, and IDA. The results show that the SMA brace initial stiffness does not affect the interstory drift and floor absolute acceleration response at design and maximum considered earthquake (MCE) level seismic hazard or collapse capacity of the frame. However, it has considerable influence on post‐event functionality of the frame. It is also found that the SMA brace ultimate deformation capacity should be at least 80% of maximum inter‐story drift demand at MCE level for satisfactory seismic performance, while larger values provide higher collapse capacity for the SMA braced frame.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/jhet.3816</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-2105-5150</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-152X |
ispartof | Journal of heterocyclic chemistry, 2020-02, Vol.57 (2), p.751-760 |
issn | 0022-152X 1943-5193 |
language | eng |
recordid | cdi_proquest_journals_2352031405 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Acceleration Collapse Deformation Design Design parameters Drift Frame structures Nonlinear analysis Nonlinear response Performance assessment Reinforcement (structures) Seismic analysis Seismic hazard Seismic response Shape memory alloys Steel frames Steel structures Stiffness |
title | F(1H‐Pyrazol‐4‐yl)methylene‐Hydrazide derivatives: Synthesis and antimicrobial activity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T13%3A19%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=F(1H%E2%80%90Pyrazol%E2%80%904%E2%80%90yl)methylene%E2%80%90Hydrazide%20derivatives:%20Synthesis%20and%20antimicrobial%20activity&rft.jtitle=Journal%20of%20heterocyclic%20chemistry&rft.au=Bhavanarushi,%20Sangepu&rft.date=2020-02&rft.volume=57&rft.issue=2&rft.spage=751&rft.epage=760&rft.pages=751-760&rft.issn=0022-152X&rft.eissn=1943-5193&rft_id=info:doi/10.1002/jhet.3816&rft_dat=%3Cproquest_cross%3E2352031405%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2352031405&rft_id=info:pmid/&rfr_iscdi=true |